Extensions 1→N→G→Q→1 with N=C2xD4 and Q=C26

Direct product G=NxQ with N=C2xD4 and Q=C26
dρLabelID
D4xC2xC26208D4xC2xC26416,228

Semidirect products G=N:Q with N=C2xD4 and Q=C26
extensionφ:Q→Out NdρLabelID
(C2xD4):1C26 = C13xC22wrC2φ: C26/C13C2 ⊆ Out C2xD4104(C2xD4):1C26416,181
(C2xD4):2C26 = C13xC4:D4φ: C26/C13C2 ⊆ Out C2xD4208(C2xD4):2C26416,182
(C2xD4):3C26 = C13xC4:1D4φ: C26/C13C2 ⊆ Out C2xD4208(C2xD4):3C26416,188
(C2xD4):4C26 = D8xC26φ: C26/C13C2 ⊆ Out C2xD4208(C2xD4):4C26416,193
(C2xD4):5C26 = C13xC8:C22φ: C26/C13C2 ⊆ Out C2xD41044(C2xD4):5C26416,197
(C2xD4):6C26 = C13x2+ 1+4φ: C26/C13C2 ⊆ Out C2xD41044(C2xD4):6C26416,231
(C2xD4):7C26 = C4oD4xC26φ: trivial image208(C2xD4):7C26416,230

Non-split extensions G=N.Q with N=C2xD4 and Q=C26
extensionφ:Q→Out NdρLabelID
(C2xD4).1C26 = C13xC23:C4φ: C26/C13C2 ⊆ Out C2xD41044(C2xD4).1C26416,49
(C2xD4).2C26 = C13xC4.D4φ: C26/C13C2 ⊆ Out C2xD41044(C2xD4).2C26416,50
(C2xD4).3C26 = C13xD4:C4φ: C26/C13C2 ⊆ Out C2xD4208(C2xD4).3C26416,52
(C2xD4).4C26 = C13xC22.D4φ: C26/C13C2 ⊆ Out C2xD4208(C2xD4).4C26416,184
(C2xD4).5C26 = C13xC4.4D4φ: C26/C13C2 ⊆ Out C2xD4208(C2xD4).5C26416,185
(C2xD4).6C26 = SD16xC26φ: C26/C13C2 ⊆ Out C2xD4208(C2xD4).6C26416,194
(C2xD4).7C26 = D4xC52φ: trivial image208(C2xD4).7C26416,179

׿
x
:
Z
F
o
wr
Q
<