direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: D4×C2×C26, C24⋊2C26, C52⋊4C23, C26.16C24, C4⋊(C22×C26), (C2×C26)⋊2C23, (C23×C26)⋊2C2, (C22×C4)⋊5C26, C23⋊3(C2×C26), C22⋊(C22×C26), (C22×C52)⋊12C2, (C2×C52)⋊15C22, C2.1(C23×C26), (C22×C26)⋊6C22, (C2×C4)⋊4(C2×C26), SmallGroup(416,228)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4×C2×C26
G = < a,b,c,d | a2=b26=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 316 in 236 conjugacy classes, 156 normal (10 characteristic)
C1, C2, C2, C2, C4, C22, C22, C2×C4, D4, C23, C23, C23, C13, C22×C4, C2×D4, C24, C26, C26, C26, C22×D4, C52, C2×C26, C2×C26, C2×C52, D4×C13, C22×C26, C22×C26, C22×C26, C22×C52, D4×C26, C23×C26, D4×C2×C26
Quotients: C1, C2, C22, D4, C23, C13, C2×D4, C24, C26, C22×D4, C2×C26, D4×C13, C22×C26, D4×C26, C23×C26, D4×C2×C26
(1 138)(2 139)(3 140)(4 141)(5 142)(6 143)(7 144)(8 145)(9 146)(10 147)(11 148)(12 149)(13 150)(14 151)(15 152)(16 153)(17 154)(18 155)(19 156)(20 131)(21 132)(22 133)(23 134)(24 135)(25 136)(26 137)(27 174)(28 175)(29 176)(30 177)(31 178)(32 179)(33 180)(34 181)(35 182)(36 157)(37 158)(38 159)(39 160)(40 161)(41 162)(42 163)(43 164)(44 165)(45 166)(46 167)(47 168)(48 169)(49 170)(50 171)(51 172)(52 173)(53 188)(54 189)(55 190)(56 191)(57 192)(58 193)(59 194)(60 195)(61 196)(62 197)(63 198)(64 199)(65 200)(66 201)(67 202)(68 203)(69 204)(70 205)(71 206)(72 207)(73 208)(74 183)(75 184)(76 185)(77 186)(78 187)(79 127)(80 128)(81 129)(82 130)(83 105)(84 106)(85 107)(86 108)(87 109)(88 110)(89 111)(90 112)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)(97 119)(98 120)(99 121)(100 122)(101 123)(102 124)(103 125)(104 126)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 200 158 105)(2 201 159 106)(3 202 160 107)(4 203 161 108)(5 204 162 109)(6 205 163 110)(7 206 164 111)(8 207 165 112)(9 208 166 113)(10 183 167 114)(11 184 168 115)(12 185 169 116)(13 186 170 117)(14 187 171 118)(15 188 172 119)(16 189 173 120)(17 190 174 121)(18 191 175 122)(19 192 176 123)(20 193 177 124)(21 194 178 125)(22 195 179 126)(23 196 180 127)(24 197 181 128)(25 198 182 129)(26 199 157 130)(27 99 154 55)(28 100 155 56)(29 101 156 57)(30 102 131 58)(31 103 132 59)(32 104 133 60)(33 79 134 61)(34 80 135 62)(35 81 136 63)(36 82 137 64)(37 83 138 65)(38 84 139 66)(39 85 140 67)(40 86 141 68)(41 87 142 69)(42 88 143 70)(43 89 144 71)(44 90 145 72)(45 91 146 73)(46 92 147 74)(47 93 148 75)(48 94 149 76)(49 95 150 77)(50 96 151 78)(51 97 152 53)(52 98 153 54)
(1 50)(2 51)(3 52)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 48)(26 49)(53 201)(54 202)(55 203)(56 204)(57 205)(58 206)(59 207)(60 208)(61 183)(62 184)(63 185)(64 186)(65 187)(66 188)(67 189)(68 190)(69 191)(70 192)(71 193)(72 194)(73 195)(74 196)(75 197)(76 198)(77 199)(78 200)(79 114)(80 115)(81 116)(82 117)(83 118)(84 119)(85 120)(86 121)(87 122)(88 123)(89 124)(90 125)(91 126)(92 127)(93 128)(94 129)(95 130)(96 105)(97 106)(98 107)(99 108)(100 109)(101 110)(102 111)(103 112)(104 113)(131 164)(132 165)(133 166)(134 167)(135 168)(136 169)(137 170)(138 171)(139 172)(140 173)(141 174)(142 175)(143 176)(144 177)(145 178)(146 179)(147 180)(148 181)(149 182)(150 157)(151 158)(152 159)(153 160)(154 161)(155 162)(156 163)
G:=sub<Sym(208)| (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,145)(9,146)(10,147)(11,148)(12,149)(13,150)(14,151)(15,152)(16,153)(17,154)(18,155)(19,156)(20,131)(21,132)(22,133)(23,134)(24,135)(25,136)(26,137)(27,174)(28,175)(29,176)(30,177)(31,178)(32,179)(33,180)(34,181)(35,182)(36,157)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,169)(49,170)(50,171)(51,172)(52,173)(53,188)(54,189)(55,190)(56,191)(57,192)(58,193)(59,194)(60,195)(61,196)(62,197)(63,198)(64,199)(65,200)(66,201)(67,202)(68,203)(69,204)(70,205)(71,206)(72,207)(73,208)(74,183)(75,184)(76,185)(77,186)(78,187)(79,127)(80,128)(81,129)(82,130)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,200,158,105)(2,201,159,106)(3,202,160,107)(4,203,161,108)(5,204,162,109)(6,205,163,110)(7,206,164,111)(8,207,165,112)(9,208,166,113)(10,183,167,114)(11,184,168,115)(12,185,169,116)(13,186,170,117)(14,187,171,118)(15,188,172,119)(16,189,173,120)(17,190,174,121)(18,191,175,122)(19,192,176,123)(20,193,177,124)(21,194,178,125)(22,195,179,126)(23,196,180,127)(24,197,181,128)(25,198,182,129)(26,199,157,130)(27,99,154,55)(28,100,155,56)(29,101,156,57)(30,102,131,58)(31,103,132,59)(32,104,133,60)(33,79,134,61)(34,80,135,62)(35,81,136,63)(36,82,137,64)(37,83,138,65)(38,84,139,66)(39,85,140,67)(40,86,141,68)(41,87,142,69)(42,88,143,70)(43,89,144,71)(44,90,145,72)(45,91,146,73)(46,92,147,74)(47,93,148,75)(48,94,149,76)(49,95,150,77)(50,96,151,78)(51,97,152,53)(52,98,153,54), (1,50)(2,51)(3,52)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(53,201)(54,202)(55,203)(56,204)(57,205)(58,206)(59,207)(60,208)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,197)(76,198)(77,199)(78,200)(79,114)(80,115)(81,116)(82,117)(83,118)(84,119)(85,120)(86,121)(87,122)(88,123)(89,124)(90,125)(91,126)(92,127)(93,128)(94,129)(95,130)(96,105)(97,106)(98,107)(99,108)(100,109)(101,110)(102,111)(103,112)(104,113)(131,164)(132,165)(133,166)(134,167)(135,168)(136,169)(137,170)(138,171)(139,172)(140,173)(141,174)(142,175)(143,176)(144,177)(145,178)(146,179)(147,180)(148,181)(149,182)(150,157)(151,158)(152,159)(153,160)(154,161)(155,162)(156,163)>;
G:=Group( (1,138)(2,139)(3,140)(4,141)(5,142)(6,143)(7,144)(8,145)(9,146)(10,147)(11,148)(12,149)(13,150)(14,151)(15,152)(16,153)(17,154)(18,155)(19,156)(20,131)(21,132)(22,133)(23,134)(24,135)(25,136)(26,137)(27,174)(28,175)(29,176)(30,177)(31,178)(32,179)(33,180)(34,181)(35,182)(36,157)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,169)(49,170)(50,171)(51,172)(52,173)(53,188)(54,189)(55,190)(56,191)(57,192)(58,193)(59,194)(60,195)(61,196)(62,197)(63,198)(64,199)(65,200)(66,201)(67,202)(68,203)(69,204)(70,205)(71,206)(72,207)(73,208)(74,183)(75,184)(76,185)(77,186)(78,187)(79,127)(80,128)(81,129)(82,130)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,200,158,105)(2,201,159,106)(3,202,160,107)(4,203,161,108)(5,204,162,109)(6,205,163,110)(7,206,164,111)(8,207,165,112)(9,208,166,113)(10,183,167,114)(11,184,168,115)(12,185,169,116)(13,186,170,117)(14,187,171,118)(15,188,172,119)(16,189,173,120)(17,190,174,121)(18,191,175,122)(19,192,176,123)(20,193,177,124)(21,194,178,125)(22,195,179,126)(23,196,180,127)(24,197,181,128)(25,198,182,129)(26,199,157,130)(27,99,154,55)(28,100,155,56)(29,101,156,57)(30,102,131,58)(31,103,132,59)(32,104,133,60)(33,79,134,61)(34,80,135,62)(35,81,136,63)(36,82,137,64)(37,83,138,65)(38,84,139,66)(39,85,140,67)(40,86,141,68)(41,87,142,69)(42,88,143,70)(43,89,144,71)(44,90,145,72)(45,91,146,73)(46,92,147,74)(47,93,148,75)(48,94,149,76)(49,95,150,77)(50,96,151,78)(51,97,152,53)(52,98,153,54), (1,50)(2,51)(3,52)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,48)(26,49)(53,201)(54,202)(55,203)(56,204)(57,205)(58,206)(59,207)(60,208)(61,183)(62,184)(63,185)(64,186)(65,187)(66,188)(67,189)(68,190)(69,191)(70,192)(71,193)(72,194)(73,195)(74,196)(75,197)(76,198)(77,199)(78,200)(79,114)(80,115)(81,116)(82,117)(83,118)(84,119)(85,120)(86,121)(87,122)(88,123)(89,124)(90,125)(91,126)(92,127)(93,128)(94,129)(95,130)(96,105)(97,106)(98,107)(99,108)(100,109)(101,110)(102,111)(103,112)(104,113)(131,164)(132,165)(133,166)(134,167)(135,168)(136,169)(137,170)(138,171)(139,172)(140,173)(141,174)(142,175)(143,176)(144,177)(145,178)(146,179)(147,180)(148,181)(149,182)(150,157)(151,158)(152,159)(153,160)(154,161)(155,162)(156,163) );
G=PermutationGroup([[(1,138),(2,139),(3,140),(4,141),(5,142),(6,143),(7,144),(8,145),(9,146),(10,147),(11,148),(12,149),(13,150),(14,151),(15,152),(16,153),(17,154),(18,155),(19,156),(20,131),(21,132),(22,133),(23,134),(24,135),(25,136),(26,137),(27,174),(28,175),(29,176),(30,177),(31,178),(32,179),(33,180),(34,181),(35,182),(36,157),(37,158),(38,159),(39,160),(40,161),(41,162),(42,163),(43,164),(44,165),(45,166),(46,167),(47,168),(48,169),(49,170),(50,171),(51,172),(52,173),(53,188),(54,189),(55,190),(56,191),(57,192),(58,193),(59,194),(60,195),(61,196),(62,197),(63,198),(64,199),(65,200),(66,201),(67,202),(68,203),(69,204),(70,205),(71,206),(72,207),(73,208),(74,183),(75,184),(76,185),(77,186),(78,187),(79,127),(80,128),(81,129),(82,130),(83,105),(84,106),(85,107),(86,108),(87,109),(88,110),(89,111),(90,112),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118),(97,119),(98,120),(99,121),(100,122),(101,123),(102,124),(103,125),(104,126)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,200,158,105),(2,201,159,106),(3,202,160,107),(4,203,161,108),(5,204,162,109),(6,205,163,110),(7,206,164,111),(8,207,165,112),(9,208,166,113),(10,183,167,114),(11,184,168,115),(12,185,169,116),(13,186,170,117),(14,187,171,118),(15,188,172,119),(16,189,173,120),(17,190,174,121),(18,191,175,122),(19,192,176,123),(20,193,177,124),(21,194,178,125),(22,195,179,126),(23,196,180,127),(24,197,181,128),(25,198,182,129),(26,199,157,130),(27,99,154,55),(28,100,155,56),(29,101,156,57),(30,102,131,58),(31,103,132,59),(32,104,133,60),(33,79,134,61),(34,80,135,62),(35,81,136,63),(36,82,137,64),(37,83,138,65),(38,84,139,66),(39,85,140,67),(40,86,141,68),(41,87,142,69),(42,88,143,70),(43,89,144,71),(44,90,145,72),(45,91,146,73),(46,92,147,74),(47,93,148,75),(48,94,149,76),(49,95,150,77),(50,96,151,78),(51,97,152,53),(52,98,153,54)], [(1,50),(2,51),(3,52),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,48),(26,49),(53,201),(54,202),(55,203),(56,204),(57,205),(58,206),(59,207),(60,208),(61,183),(62,184),(63,185),(64,186),(65,187),(66,188),(67,189),(68,190),(69,191),(70,192),(71,193),(72,194),(73,195),(74,196),(75,197),(76,198),(77,199),(78,200),(79,114),(80,115),(81,116),(82,117),(83,118),(84,119),(85,120),(86,121),(87,122),(88,123),(89,124),(90,125),(91,126),(92,127),(93,128),(94,129),(95,130),(96,105),(97,106),(98,107),(99,108),(100,109),(101,110),(102,111),(103,112),(104,113),(131,164),(132,165),(133,166),(134,167),(135,168),(136,169),(137,170),(138,171),(139,172),(140,173),(141,174),(142,175),(143,176),(144,177),(145,178),(146,179),(147,180),(148,181),(149,182),(150,157),(151,158),(152,159),(153,160),(154,161),(155,162),(156,163)]])
260 conjugacy classes
| class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | 4B | 4C | 4D | 13A | ··· | 13L | 26A | ··· | 26CF | 26CG | ··· | 26FX | 52A | ··· | 52AV |
| order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 26 | ··· | 26 | 52 | ··· | 52 |
| size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
260 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| type | + | + | + | + | + | |||||
| image | C1 | C2 | C2 | C2 | C13 | C26 | C26 | C26 | D4 | D4×C13 |
| kernel | D4×C2×C26 | C22×C52 | D4×C26 | C23×C26 | C22×D4 | C22×C4 | C2×D4 | C24 | C2×C26 | C22 |
| # reps | 1 | 1 | 12 | 2 | 12 | 12 | 144 | 24 | 4 | 48 |
Matrix representation of D4×C2×C26 ►in GL4(𝔽53) generated by
| 1 | 0 | 0 | 0 |
| 0 | 52 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 52 | 0 | 0 | 0 |
| 0 | 52 | 0 | 0 |
| 0 | 0 | 6 | 0 |
| 0 | 0 | 0 | 6 |
| 1 | 0 | 0 | 0 |
| 0 | 52 | 0 | 0 |
| 0 | 0 | 39 | 2 |
| 0 | 0 | 34 | 14 |
| 1 | 0 | 0 | 0 |
| 0 | 52 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 14 | 52 |
G:=sub<GL(4,GF(53))| [1,0,0,0,0,52,0,0,0,0,1,0,0,0,0,1],[52,0,0,0,0,52,0,0,0,0,6,0,0,0,0,6],[1,0,0,0,0,52,0,0,0,0,39,34,0,0,2,14],[1,0,0,0,0,52,0,0,0,0,1,14,0,0,0,52] >;
D4×C2×C26 in GAP, Magma, Sage, TeX
D_4\times C_2\times C_{26} % in TeX
G:=Group("D4xC2xC26"); // GroupNames label
G:=SmallGroup(416,228);
// by ID
G=gap.SmallGroup(416,228);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-13,-2,2521]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^26=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations