Extensions 1→N→G→Q→1 with N=C2×C102 and Q=C2

Direct product G=N×Q with N=C2×C102 and Q=C2
dρLabelID
C22×C102408C2^2xC102408,46

Semidirect products G=N:Q with N=C2×C102 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C102)⋊1C2 = D4×C51φ: C2/C1C2 ⊆ Aut C2×C1022042(C2xC102):1C2408,31
(C2×C102)⋊2C2 = C517D4φ: C2/C1C2 ⊆ Aut C2×C1022042(C2xC102):2C2408,29
(C2×C102)⋊3C2 = C22×D51φ: C2/C1C2 ⊆ Aut C2×C102204(C2xC102):3C2408,45
(C2×C102)⋊4C2 = C3×C17⋊D4φ: C2/C1C2 ⊆ Aut C2×C1022042(C2xC102):4C2408,19
(C2×C102)⋊5C2 = C2×C6×D17φ: C2/C1C2 ⊆ Aut C2×C102204(C2xC102):5C2408,43
(C2×C102)⋊6C2 = C17×C3⋊D4φ: C2/C1C2 ⊆ Aut C2×C1022042(C2xC102):6C2408,24
(C2×C102)⋊7C2 = S3×C2×C34φ: C2/C1C2 ⊆ Aut C2×C102204(C2xC102):7C2408,44

Non-split extensions G=N.Q with N=C2×C102 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C2×C102).1C2 = C2×Dic51φ: C2/C1C2 ⊆ Aut C2×C102408(C2xC102).1C2408,28
(C2×C102).2C2 = C6×Dic17φ: C2/C1C2 ⊆ Aut C2×C102408(C2xC102).2C2408,18
(C2×C102).3C2 = Dic3×C34φ: C2/C1C2 ⊆ Aut C2×C102408(C2xC102).3C2408,23

׿
×
𝔽