Copied to
clipboard

G = S3×C2×C34order 408 = 23·3·17

Direct product of C2×C34 and S3

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C2×C34, C514C23, C1024C22, C6⋊(C2×C34), C3⋊(C22×C34), (C2×C6)⋊3C34, (C2×C102)⋊7C2, SmallGroup(408,44)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C2×C34
C1C3C51S3×C17S3×C34 — S3×C2×C34
C3 — S3×C2×C34
C1C2×C34

Generators and relations for S3×C2×C34
 G = < a,b,c,d | a2=b34=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 108 in 64 conjugacy classes, 42 normal (10 characteristic)
C1, C2, C2, C3, C22, C22, S3, C6, C23, D6, C2×C6, C17, C22×S3, C34, C34, C51, C2×C34, C2×C34, S3×C17, C102, C22×C34, S3×C34, C2×C102, S3×C2×C34
Quotients: C1, C2, C22, S3, C23, D6, C17, C22×S3, C34, C2×C34, S3×C17, C22×C34, S3×C34, S3×C2×C34

Smallest permutation representation of S3×C2×C34
On 204 points
Generators in S204
(1 151)(2 152)(3 153)(4 154)(5 155)(6 156)(7 157)(8 158)(9 159)(10 160)(11 161)(12 162)(13 163)(14 164)(15 165)(16 166)(17 167)(18 168)(19 169)(20 170)(21 137)(22 138)(23 139)(24 140)(25 141)(26 142)(27 143)(28 144)(29 145)(30 146)(31 147)(32 148)(33 149)(34 150)(35 194)(36 195)(37 196)(38 197)(39 198)(40 199)(41 200)(42 201)(43 202)(44 203)(45 204)(46 171)(47 172)(48 173)(49 174)(50 175)(51 176)(52 177)(53 178)(54 179)(55 180)(56 181)(57 182)(58 183)(59 184)(60 185)(61 186)(62 187)(63 188)(64 189)(65 190)(66 191)(67 192)(68 193)(69 123)(70 124)(71 125)(72 126)(73 127)(74 128)(75 129)(76 130)(77 131)(78 132)(79 133)(80 134)(81 135)(82 136)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(101 121)(102 122)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170)(171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204)
(1 40 130)(2 41 131)(3 42 132)(4 43 133)(5 44 134)(6 45 135)(7 46 136)(8 47 103)(9 48 104)(10 49 105)(11 50 106)(12 51 107)(13 52 108)(14 53 109)(15 54 110)(16 55 111)(17 56 112)(18 57 113)(19 58 114)(20 59 115)(21 60 116)(22 61 117)(23 62 118)(24 63 119)(25 64 120)(26 65 121)(27 66 122)(28 67 123)(29 68 124)(30 35 125)(31 36 126)(32 37 127)(33 38 128)(34 39 129)(69 144 192)(70 145 193)(71 146 194)(72 147 195)(73 148 196)(74 149 197)(75 150 198)(76 151 199)(77 152 200)(78 153 201)(79 154 202)(80 155 203)(81 156 204)(82 157 171)(83 158 172)(84 159 173)(85 160 174)(86 161 175)(87 162 176)(88 163 177)(89 164 178)(90 165 179)(91 166 180)(92 167 181)(93 168 182)(94 169 183)(95 170 184)(96 137 185)(97 138 186)(98 139 187)(99 140 188)(100 141 189)(101 142 190)(102 143 191)
(1 168)(2 169)(3 170)(4 137)(5 138)(6 139)(7 140)(8 141)(9 142)(10 143)(11 144)(12 145)(13 146)(14 147)(15 148)(16 149)(17 150)(18 151)(19 152)(20 153)(21 154)(22 155)(23 156)(24 157)(25 158)(26 159)(27 160)(28 161)(29 162)(30 163)(31 164)(32 165)(33 166)(34 167)(35 88)(36 89)(37 90)(38 91)(39 92)(40 93)(41 94)(42 95)(43 96)(44 97)(45 98)(46 99)(47 100)(48 101)(49 102)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)(58 77)(59 78)(60 79)(61 80)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(103 189)(104 190)(105 191)(106 192)(107 193)(108 194)(109 195)(110 196)(111 197)(112 198)(113 199)(114 200)(115 201)(116 202)(117 203)(118 204)(119 171)(120 172)(121 173)(122 174)(123 175)(124 176)(125 177)(126 178)(127 179)(128 180)(129 181)(130 182)(131 183)(132 184)(133 185)(134 186)(135 187)(136 188)

G:=sub<Sym(204)| (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,161)(12,162)(13,163)(14,164)(15,165)(16,166)(17,167)(18,168)(19,169)(20,170)(21,137)(22,138)(23,139)(24,140)(25,141)(26,142)(27,143)(28,144)(29,145)(30,146)(31,147)(32,148)(33,149)(34,150)(35,194)(36,195)(37,196)(38,197)(39,198)(40,199)(41,200)(42,201)(43,202)(44,203)(45,204)(46,171)(47,172)(48,173)(49,174)(50,175)(51,176)(52,177)(53,178)(54,179)(55,180)(56,181)(57,182)(58,183)(59,184)(60,185)(61,186)(62,187)(63,188)(64,189)(65,190)(66,191)(67,192)(68,193)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204), (1,40,130)(2,41,131)(3,42,132)(4,43,133)(5,44,134)(6,45,135)(7,46,136)(8,47,103)(9,48,104)(10,49,105)(11,50,106)(12,51,107)(13,52,108)(14,53,109)(15,54,110)(16,55,111)(17,56,112)(18,57,113)(19,58,114)(20,59,115)(21,60,116)(22,61,117)(23,62,118)(24,63,119)(25,64,120)(26,65,121)(27,66,122)(28,67,123)(29,68,124)(30,35,125)(31,36,126)(32,37,127)(33,38,128)(34,39,129)(69,144,192)(70,145,193)(71,146,194)(72,147,195)(73,148,196)(74,149,197)(75,150,198)(76,151,199)(77,152,200)(78,153,201)(79,154,202)(80,155,203)(81,156,204)(82,157,171)(83,158,172)(84,159,173)(85,160,174)(86,161,175)(87,162,176)(88,163,177)(89,164,178)(90,165,179)(91,166,180)(92,167,181)(93,168,182)(94,169,183)(95,170,184)(96,137,185)(97,138,186)(98,139,187)(99,140,188)(100,141,189)(101,142,190)(102,143,191), (1,168)(2,169)(3,170)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,144)(12,145)(13,146)(14,147)(15,148)(16,149)(17,150)(18,151)(19,152)(20,153)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,161)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(103,189)(104,190)(105,191)(106,192)(107,193)(108,194)(109,195)(110,196)(111,197)(112,198)(113,199)(114,200)(115,201)(116,202)(117,203)(118,204)(119,171)(120,172)(121,173)(122,174)(123,175)(124,176)(125,177)(126,178)(127,179)(128,180)(129,181)(130,182)(131,183)(132,184)(133,185)(134,186)(135,187)(136,188)>;

G:=Group( (1,151)(2,152)(3,153)(4,154)(5,155)(6,156)(7,157)(8,158)(9,159)(10,160)(11,161)(12,162)(13,163)(14,164)(15,165)(16,166)(17,167)(18,168)(19,169)(20,170)(21,137)(22,138)(23,139)(24,140)(25,141)(26,142)(27,143)(28,144)(29,145)(30,146)(31,147)(32,148)(33,149)(34,150)(35,194)(36,195)(37,196)(38,197)(39,198)(40,199)(41,200)(42,201)(43,202)(44,203)(45,204)(46,171)(47,172)(48,173)(49,174)(50,175)(51,176)(52,177)(53,178)(54,179)(55,180)(56,181)(57,182)(58,183)(59,184)(60,185)(61,186)(62,187)(63,188)(64,189)(65,190)(66,191)(67,192)(68,193)(69,123)(70,124)(71,125)(72,126)(73,127)(74,128)(75,129)(76,130)(77,131)(78,132)(79,133)(80,134)(81,135)(82,136)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(101,121)(102,122), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170)(171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204), (1,40,130)(2,41,131)(3,42,132)(4,43,133)(5,44,134)(6,45,135)(7,46,136)(8,47,103)(9,48,104)(10,49,105)(11,50,106)(12,51,107)(13,52,108)(14,53,109)(15,54,110)(16,55,111)(17,56,112)(18,57,113)(19,58,114)(20,59,115)(21,60,116)(22,61,117)(23,62,118)(24,63,119)(25,64,120)(26,65,121)(27,66,122)(28,67,123)(29,68,124)(30,35,125)(31,36,126)(32,37,127)(33,38,128)(34,39,129)(69,144,192)(70,145,193)(71,146,194)(72,147,195)(73,148,196)(74,149,197)(75,150,198)(76,151,199)(77,152,200)(78,153,201)(79,154,202)(80,155,203)(81,156,204)(82,157,171)(83,158,172)(84,159,173)(85,160,174)(86,161,175)(87,162,176)(88,163,177)(89,164,178)(90,165,179)(91,166,180)(92,167,181)(93,168,182)(94,169,183)(95,170,184)(96,137,185)(97,138,186)(98,139,187)(99,140,188)(100,141,189)(101,142,190)(102,143,191), (1,168)(2,169)(3,170)(4,137)(5,138)(6,139)(7,140)(8,141)(9,142)(10,143)(11,144)(12,145)(13,146)(14,147)(15,148)(16,149)(17,150)(18,151)(19,152)(20,153)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,161)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,88)(36,89)(37,90)(38,91)(39,92)(40,93)(41,94)(42,95)(43,96)(44,97)(45,98)(46,99)(47,100)(48,101)(49,102)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(103,189)(104,190)(105,191)(106,192)(107,193)(108,194)(109,195)(110,196)(111,197)(112,198)(113,199)(114,200)(115,201)(116,202)(117,203)(118,204)(119,171)(120,172)(121,173)(122,174)(123,175)(124,176)(125,177)(126,178)(127,179)(128,180)(129,181)(130,182)(131,183)(132,184)(133,185)(134,186)(135,187)(136,188) );

G=PermutationGroup([[(1,151),(2,152),(3,153),(4,154),(5,155),(6,156),(7,157),(8,158),(9,159),(10,160),(11,161),(12,162),(13,163),(14,164),(15,165),(16,166),(17,167),(18,168),(19,169),(20,170),(21,137),(22,138),(23,139),(24,140),(25,141),(26,142),(27,143),(28,144),(29,145),(30,146),(31,147),(32,148),(33,149),(34,150),(35,194),(36,195),(37,196),(38,197),(39,198),(40,199),(41,200),(42,201),(43,202),(44,203),(45,204),(46,171),(47,172),(48,173),(49,174),(50,175),(51,176),(52,177),(53,178),(54,179),(55,180),(56,181),(57,182),(58,183),(59,184),(60,185),(61,186),(62,187),(63,188),(64,189),(65,190),(66,191),(67,192),(68,193),(69,123),(70,124),(71,125),(72,126),(73,127),(74,128),(75,129),(76,130),(77,131),(78,132),(79,133),(80,134),(81,135),(82,136),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(101,121),(102,122)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170),(171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204)], [(1,40,130),(2,41,131),(3,42,132),(4,43,133),(5,44,134),(6,45,135),(7,46,136),(8,47,103),(9,48,104),(10,49,105),(11,50,106),(12,51,107),(13,52,108),(14,53,109),(15,54,110),(16,55,111),(17,56,112),(18,57,113),(19,58,114),(20,59,115),(21,60,116),(22,61,117),(23,62,118),(24,63,119),(25,64,120),(26,65,121),(27,66,122),(28,67,123),(29,68,124),(30,35,125),(31,36,126),(32,37,127),(33,38,128),(34,39,129),(69,144,192),(70,145,193),(71,146,194),(72,147,195),(73,148,196),(74,149,197),(75,150,198),(76,151,199),(77,152,200),(78,153,201),(79,154,202),(80,155,203),(81,156,204),(82,157,171),(83,158,172),(84,159,173),(85,160,174),(86,161,175),(87,162,176),(88,163,177),(89,164,178),(90,165,179),(91,166,180),(92,167,181),(93,168,182),(94,169,183),(95,170,184),(96,137,185),(97,138,186),(98,139,187),(99,140,188),(100,141,189),(101,142,190),(102,143,191)], [(1,168),(2,169),(3,170),(4,137),(5,138),(6,139),(7,140),(8,141),(9,142),(10,143),(11,144),(12,145),(13,146),(14,147),(15,148),(16,149),(17,150),(18,151),(19,152),(20,153),(21,154),(22,155),(23,156),(24,157),(25,158),(26,159),(27,160),(28,161),(29,162),(30,163),(31,164),(32,165),(33,166),(34,167),(35,88),(36,89),(37,90),(38,91),(39,92),(40,93),(41,94),(42,95),(43,96),(44,97),(45,98),(46,99),(47,100),(48,101),(49,102),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76),(58,77),(59,78),(60,79),(61,80),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(103,189),(104,190),(105,191),(106,192),(107,193),(108,194),(109,195),(110,196),(111,197),(112,198),(113,199),(114,200),(115,201),(116,202),(117,203),(118,204),(119,171),(120,172),(121,173),(122,174),(123,175),(124,176),(125,177),(126,178),(127,179),(128,180),(129,181),(130,182),(131,183),(132,184),(133,185),(134,186),(135,187),(136,188)]])

204 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 6A6B6C17A···17P34A···34AV34AW···34DH51A···51P102A···102AV
order12222222366617···1734···3434···3451···51102···102
size1111333322221···11···13···32···22···2

204 irreducible representations

dim1111112222
type+++++
imageC1C2C2C17C34C34S3D6S3×C17S3×C34
kernelS3×C2×C34S3×C34C2×C102C22×S3D6C2×C6C2×C34C34C22C2
# reps161169616131648

Matrix representation of S3×C2×C34 in GL3(𝔽103) generated by

10200
010
001
,
100
0950
0095
,
100
00102
01102
,
100
00102
01020
G:=sub<GL(3,GF(103))| [102,0,0,0,1,0,0,0,1],[1,0,0,0,95,0,0,0,95],[1,0,0,0,0,1,0,102,102],[1,0,0,0,0,102,0,102,0] >;

S3×C2×C34 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_{34}
% in TeX

G:=Group("S3xC2xC34");
// GroupNames label

G:=SmallGroup(408,44);
// by ID

G=gap.SmallGroup(408,44);
# by ID

G:=PCGroup([5,-2,-2,-2,-17,-3,6804]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^34=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽