Extensions 1→N→G→Q→1 with N=D13⋊C8 and Q=C2

Direct product G=N×Q with N=D13⋊C8 and Q=C2
dρLabelID
C2×D13⋊C8208C2xD13:C8416,199

Semidirect products G=N:Q with N=D13⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
D13⋊C81C2 = D521C4φ: C2/C1C2 ⊆ Out D13⋊C81048+D13:C8:1C2416,82
D13⋊C82C2 = Dic26.C4φ: C2/C1C2 ⊆ Out D13⋊C82088-D13:C8:2C2416,205
D13⋊C83C2 = D52.C4φ: C2/C1C2 ⊆ Out D13⋊C82088+D13:C8:3C2416,207
D13⋊C84C2 = D13⋊M4(2)φ: C2/C1C2 ⊆ Out D13⋊C81044D13:C8:4C2416,201

Non-split extensions G=N.Q with N=D13⋊C8 and Q=C2
extensionφ:Q→Out NdρLabelID
D13⋊C8.1C2 = D13.Q16φ: C2/C1C2 ⊆ Out D13⋊C81048-D13:C8.1C2416,84
D13⋊C8.2C2 = C104⋊C4φ: C2/C1C2 ⊆ Out D13⋊C81044D13:C8.2C2416,67
D13⋊C8.3C2 = C8×C13⋊C4φ: trivial image1044D13:C8.3C2416,66

׿
×
𝔽