Copied to
clipboard

G = D13⋊M4(2)  order 416 = 25·13

The semidirect product of D13 and M4(2) acting via M4(2)/C2×C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D13⋊M4(2), Dic13.11C23, D13⋊C84C2, C13⋊C82C22, (C2×C52).8C4, C52.20(C2×C4), (C4×D13).8C4, C132(C2×M4(2)), C52.C45C2, D26.14(C2×C4), C26.3(C22×C4), C13⋊M4(2)⋊3C2, (C22×D13).9C4, Dic13.16(C2×C4), (C4×D13).34C22, (C2×Dic13).56C22, C4.21(C2×C13⋊C4), (C2×C4).8(C13⋊C4), (C2×C4×D13).15C2, C2.5(C22×C13⋊C4), C22.6(C2×C13⋊C4), (C2×C26).15(C2×C4), SmallGroup(416,201)

Series: Derived Chief Lower central Upper central

C1C26 — D13⋊M4(2)
C1C13C26Dic13C13⋊C8D13⋊C8 — D13⋊M4(2)
C13C26 — D13⋊M4(2)
C1C4C2×C4

Generators and relations for D13⋊M4(2)
 G = < a,b,c,d | a13=b2=c8=d2=1, bab=a-1, cac-1=a5, ad=da, cbc-1=a4b, bd=db, dcd=c5 >

Subgroups: 436 in 68 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C23, C13, C2×C8, M4(2), C22×C4, D13, D13, C26, C26, C2×M4(2), Dic13, C52, D26, D26, C2×C26, C13⋊C8, C4×D13, C2×Dic13, C2×C52, C22×D13, D13⋊C8, C52.C4, C13⋊M4(2), C2×C4×D13, D13⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C2×M4(2), C13⋊C4, C2×C13⋊C4, C22×C13⋊C4, D13⋊M4(2)

Smallest permutation representation of D13⋊M4(2)
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(14 17)(15 16)(18 26)(19 25)(20 24)(21 23)(27 39)(28 38)(29 37)(30 36)(31 35)(32 34)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)(53 60)(54 59)(55 58)(56 57)(61 65)(62 64)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(79 90)(80 89)(81 88)(82 87)(83 86)(84 85)(92 97)(93 96)(94 95)(98 104)(99 103)(100 102)
(1 95 27 57 16 85 40 72)(2 103 39 62 17 80 52 77)(3 98 38 54 18 88 51 69)(4 93 37 59 19 83 50 74)(5 101 36 64 20 91 49 66)(6 96 35 56 21 86 48 71)(7 104 34 61 22 81 47 76)(8 99 33 53 23 89 46 68)(9 94 32 58 24 84 45 73)(10 102 31 63 25 79 44 78)(11 97 30 55 26 87 43 70)(12 92 29 60 14 82 42 75)(13 100 28 65 15 90 41 67)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 14)(13 15)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(53,60)(54,59)(55,58)(56,57)(61,65)(62,64)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,90)(80,89)(81,88)(82,87)(83,86)(84,85)(92,97)(93,96)(94,95)(98,104)(99,103)(100,102), (1,95,27,57,16,85,40,72)(2,103,39,62,17,80,52,77)(3,98,38,54,18,88,51,69)(4,93,37,59,19,83,50,74)(5,101,36,64,20,91,49,66)(6,96,35,56,21,86,48,71)(7,104,34,61,22,81,47,76)(8,99,33,53,23,89,46,68)(9,94,32,58,24,84,45,73)(10,102,31,63,25,79,44,78)(11,97,30,55,26,87,43,70)(12,92,29,60,14,82,42,75)(13,100,28,65,15,90,41,67), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,14)(13,15)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,17)(15,16)(18,26)(19,25)(20,24)(21,23)(27,39)(28,38)(29,37)(30,36)(31,35)(32,34)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(53,60)(54,59)(55,58)(56,57)(61,65)(62,64)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,90)(80,89)(81,88)(82,87)(83,86)(84,85)(92,97)(93,96)(94,95)(98,104)(99,103)(100,102), (1,95,27,57,16,85,40,72)(2,103,39,62,17,80,52,77)(3,98,38,54,18,88,51,69)(4,93,37,59,19,83,50,74)(5,101,36,64,20,91,49,66)(6,96,35,56,21,86,48,71)(7,104,34,61,22,81,47,76)(8,99,33,53,23,89,46,68)(9,94,32,58,24,84,45,73)(10,102,31,63,25,79,44,78)(11,97,30,55,26,87,43,70)(12,92,29,60,14,82,42,75)(13,100,28,65,15,90,41,67), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,14)(13,15)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(14,17),(15,16),(18,26),(19,25),(20,24),(21,23),(27,39),(28,38),(29,37),(30,36),(31,35),(32,34),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47),(53,60),(54,59),(55,58),(56,57),(61,65),(62,64),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(79,90),(80,89),(81,88),(82,87),(83,86),(84,85),(92,97),(93,96),(94,95),(98,104),(99,103),(100,102)], [(1,95,27,57,16,85,40,72),(2,103,39,62,17,80,52,77),(3,98,38,54,18,88,51,69),(4,93,37,59,19,83,50,74),(5,101,36,64,20,91,49,66),(6,96,35,56,21,86,48,71),(7,104,34,61,22,81,47,76),(8,99,33,53,23,89,46,68),(9,94,32,58,24,84,45,73),(10,102,31,63,25,79,44,78),(11,97,30,55,26,87,43,70),(12,92,29,60,14,82,42,75),(13,100,28,65,15,90,41,67)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,14),(13,15),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52)]])

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F8A···8H13A13B13C26A···26I52A···52L
order1222224444448···813131326···2652···52
size11213132611213132626···264444···44···4

44 irreducible representations

dim1111111124444
type++++++++
imageC1C2C2C2C2C4C4C4M4(2)C13⋊C4C2×C13⋊C4C2×C13⋊C4D13⋊M4(2)
kernelD13⋊M4(2)D13⋊C8C52.C4C13⋊M4(2)C2×C4×D13C4×D13C2×C52C22×D13D13C2×C4C4C22C1
# reps12221422436312

Matrix representation of D13⋊M4(2) in GL4(𝔽313) generated by

0100
3127700
0049247
0066288
,
0100
1000
0049247
00264264
,
003120
000312
288000
2662500
,
312000
031200
0010
0001
G:=sub<GL(4,GF(313))| [0,312,0,0,1,77,0,0,0,0,49,66,0,0,247,288],[0,1,0,0,1,0,0,0,0,0,49,264,0,0,247,264],[0,0,288,266,0,0,0,25,312,0,0,0,0,312,0,0],[312,0,0,0,0,312,0,0,0,0,1,0,0,0,0,1] >;

D13⋊M4(2) in GAP, Magma, Sage, TeX

D_{13}\rtimes M_4(2)
% in TeX

G:=Group("D13:M4(2)");
// GroupNames label

G:=SmallGroup(416,201);
// by ID

G=gap.SmallGroup(416,201);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,48,103,362,69,9221,1751]);
// Polycyclic

G:=Group<a,b,c,d|a^13=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^5,a*d=d*a,c*b*c^-1=a^4*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽