Extensions 1→N→G→Q→1 with N=C102 and Q=C4

Direct product G=N×Q with N=C102 and Q=C4
dρLabelID
C2×C204408C2xC204408,30

Semidirect products G=N:Q with N=C102 and Q=C4
extensionφ:Q→Aut NdρLabelID
C1021C4 = C2×C51⋊C4φ: C4/C1C4 ⊆ Aut C1021024C102:1C4408,40
C1022C4 = C6×C17⋊C4φ: C4/C1C4 ⊆ Aut C1021024C102:2C4408,39
C1023C4 = C2×Dic51φ: C4/C2C2 ⊆ Aut C102408C102:3C4408,28
C1024C4 = C6×Dic17φ: C4/C2C2 ⊆ Aut C102408C102:4C4408,18
C1025C4 = Dic3×C34φ: C4/C2C2 ⊆ Aut C102408C102:5C4408,23

Non-split extensions G=N.Q with N=C102 and Q=C4
extensionφ:Q→Aut NdρLabelID
C102.1C4 = C513C8φ: C4/C1C4 ⊆ Aut C1024084C102.1C4408,6
C102.2C4 = C3×C172C8φ: C4/C1C4 ⊆ Aut C1024084C102.2C4408,5
C102.3C4 = C515C8φ: C4/C2C2 ⊆ Aut C1024082C102.3C4408,3
C102.4C4 = C3×C173C8φ: C4/C2C2 ⊆ Aut C1024082C102.4C4408,2
C102.5C4 = C17×C3⋊C8φ: C4/C2C2 ⊆ Aut C1024082C102.5C4408,1

׿
×
𝔽