Copied to
clipboard

G = C2×C51⋊C4order 408 = 23·3·17

Direct product of C2 and C51⋊C4

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×C51⋊C4, D34.S3, C34⋊Dic3, C1021C4, D17⋊Dic3, D17.2D6, C6⋊(C17⋊C4), C512(C2×C4), C17⋊(C2×Dic3), (C3×D17)⋊2C4, (C6×D17).2C2, (C3×D17).2C22, C32(C2×C17⋊C4), SmallGroup(408,40)

Series: Derived Chief Lower central Upper central

C1C51 — C2×C51⋊C4
C1C17C51C3×D17C51⋊C4 — C2×C51⋊C4
C51 — C2×C51⋊C4
C1C2

Generators and relations for C2×C51⋊C4
 G = < a,b,c | a2=b51=c4=1, ab=ba, ac=ca, cbc-1=b47 >

17C2
17C2
17C22
51C4
51C4
17C6
17C6
51C2×C4
17Dic3
17Dic3
17C2×C6
3C17⋊C4
3C17⋊C4
17C2×Dic3
3C2×C17⋊C4

Smallest permutation representation of C2×C51⋊C4
On 102 points
Generators in S102
(1 79)(2 80)(3 81)(4 82)(5 83)(6 84)(7 85)(8 86)(9 87)(10 88)(11 89)(12 90)(13 91)(14 92)(15 93)(16 94)(17 95)(18 96)(19 97)(20 98)(21 99)(22 100)(23 101)(24 102)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 73)(47 74)(48 75)(49 76)(50 77)(51 78)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)
(1 79)(2 66 17 75)(3 53 33 71)(4 91 49 67)(5 78 14 63)(6 65 30 59)(7 52 46 55)(8 90 11 102)(9 77 27 98)(10 64 43 94)(12 89 24 86)(13 76 40 82)(15 101 21 74)(16 88 37 70)(18 62)(19 100 34 58)(20 87 50 54)(22 61 31 97)(23 99 47 93)(25 73 28 85)(26 60 44 81)(29 72 41 69)(32 84 38 57)(35 96)(36 83 51 92)(39 95 48 80)(42 56 45 68)

G:=sub<Sym(102)| (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,79)(2,66,17,75)(3,53,33,71)(4,91,49,67)(5,78,14,63)(6,65,30,59)(7,52,46,55)(8,90,11,102)(9,77,27,98)(10,64,43,94)(12,89,24,86)(13,76,40,82)(15,101,21,74)(16,88,37,70)(18,62)(19,100,34,58)(20,87,50,54)(22,61,31,97)(23,99,47,93)(25,73,28,85)(26,60,44,81)(29,72,41,69)(32,84,38,57)(35,96)(36,83,51,92)(39,95,48,80)(42,56,45,68)>;

G:=Group( (1,79)(2,80)(3,81)(4,82)(5,83)(6,84)(7,85)(8,86)(9,87)(10,88)(11,89)(12,90)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,97)(20,98)(21,99)(22,100)(23,101)(24,102)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,73)(47,74)(48,75)(49,76)(50,77)(51,78), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,79)(2,66,17,75)(3,53,33,71)(4,91,49,67)(5,78,14,63)(6,65,30,59)(7,52,46,55)(8,90,11,102)(9,77,27,98)(10,64,43,94)(12,89,24,86)(13,76,40,82)(15,101,21,74)(16,88,37,70)(18,62)(19,100,34,58)(20,87,50,54)(22,61,31,97)(23,99,47,93)(25,73,28,85)(26,60,44,81)(29,72,41,69)(32,84,38,57)(35,96)(36,83,51,92)(39,95,48,80)(42,56,45,68) );

G=PermutationGroup([[(1,79),(2,80),(3,81),(4,82),(5,83),(6,84),(7,85),(8,86),(9,87),(10,88),(11,89),(12,90),(13,91),(14,92),(15,93),(16,94),(17,95),(18,96),(19,97),(20,98),(21,99),(22,100),(23,101),(24,102),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,73),(47,74),(48,75),(49,76),(50,77),(51,78)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)], [(1,79),(2,66,17,75),(3,53,33,71),(4,91,49,67),(5,78,14,63),(6,65,30,59),(7,52,46,55),(8,90,11,102),(9,77,27,98),(10,64,43,94),(12,89,24,86),(13,76,40,82),(15,101,21,74),(16,88,37,70),(18,62),(19,100,34,58),(20,87,50,54),(22,61,31,97),(23,99,47,93),(25,73,28,85),(26,60,44,81),(29,72,41,69),(32,84,38,57),(35,96),(36,83,51,92),(39,95,48,80),(42,56,45,68)]])

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D6A6B6C17A17B17C17D34A34B34C34D51A···51H102A···102H
order122234444666171717173434343451···51102···102
size11171725151515123434444444444···44···4

36 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4S3Dic3D6Dic3C17⋊C4C2×C17⋊C4C51⋊C4C2×C51⋊C4
kernelC2×C51⋊C4C51⋊C4C6×D17C3×D17C102D34D17D17C34C6C3C2C1
# reps1212211114488

Matrix representation of C2×C51⋊C4 in GL6(𝔽409)

40800000
04080000
001000
000100
000010
000001
,
4084080000
100000
00294218269318
0091241408
00111511625
00384219269334
,
26600000
1431430000
001000
00111511625
00318269218294
002416613975

G:=sub<GL(6,GF(409))| [408,0,0,0,0,0,0,408,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[408,1,0,0,0,0,408,0,0,0,0,0,0,0,294,91,1,384,0,0,218,24,115,219,0,0,269,1,116,269,0,0,318,408,25,334],[266,143,0,0,0,0,0,143,0,0,0,0,0,0,1,1,318,24,0,0,0,115,269,166,0,0,0,116,218,139,0,0,0,25,294,75] >;

C2×C51⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{51}\rtimes C_4
% in TeX

G:=Group("C2xC51:C4");
// GroupNames label

G:=SmallGroup(408,40);
// by ID

G=gap.SmallGroup(408,40);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-17,20,323,2404,2414]);
// Polycyclic

G:=Group<a,b,c|a^2=b^51=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^47>;
// generators/relations

Export

Subgroup lattice of C2×C51⋊C4 in TeX

׿
×
𝔽