extension | φ:Q→Aut N | d | ρ | Label | ID |
C34.1D6 = Dic3×D17 | φ: D6/S3 → C2 ⊆ Aut C34 | 204 | 4- | C34.1D6 | 408,7 |
C34.2D6 = S3×Dic17 | φ: D6/S3 → C2 ⊆ Aut C34 | 204 | 4- | C34.2D6 | 408,8 |
C34.3D6 = D51⋊2C4 | φ: D6/S3 → C2 ⊆ Aut C34 | 204 | 4+ | C34.3D6 | 408,9 |
C34.4D6 = C51⋊D4 | φ: D6/S3 → C2 ⊆ Aut C34 | 204 | 4- | C34.4D6 | 408,10 |
C34.5D6 = C3⋊D68 | φ: D6/S3 → C2 ⊆ Aut C34 | 204 | 4+ | C34.5D6 | 408,11 |
C34.6D6 = C17⋊D12 | φ: D6/S3 → C2 ⊆ Aut C34 | 204 | 4+ | C34.6D6 | 408,12 |
C34.7D6 = C51⋊Q8 | φ: D6/S3 → C2 ⊆ Aut C34 | 408 | 4- | C34.7D6 | 408,13 |
C34.8D6 = Dic102 | φ: D6/C6 → C2 ⊆ Aut C34 | 408 | 2- | C34.8D6 | 408,25 |
C34.9D6 = C4×D51 | φ: D6/C6 → C2 ⊆ Aut C34 | 204 | 2 | C34.9D6 | 408,26 |
C34.10D6 = D204 | φ: D6/C6 → C2 ⊆ Aut C34 | 204 | 2+ | C34.10D6 | 408,27 |
C34.11D6 = C2×Dic51 | φ: D6/C6 → C2 ⊆ Aut C34 | 408 | | C34.11D6 | 408,28 |
C34.12D6 = C51⋊7D4 | φ: D6/C6 → C2 ⊆ Aut C34 | 204 | 2 | C34.12D6 | 408,29 |
C34.13D6 = C17×Dic6 | central extension (φ=1) | 408 | 2 | C34.13D6 | 408,20 |
C34.14D6 = S3×C68 | central extension (φ=1) | 204 | 2 | C34.14D6 | 408,21 |
C34.15D6 = C17×D12 | central extension (φ=1) | 204 | 2 | C34.15D6 | 408,22 |
C34.16D6 = Dic3×C34 | central extension (φ=1) | 408 | | C34.16D6 | 408,23 |
C34.17D6 = C17×C3⋊D4 | central extension (φ=1) | 204 | 2 | C34.17D6 | 408,24 |