Extensions 1→N→G→Q→1 with N=C34 and Q=D6

Direct product G=N×Q with N=C34 and Q=D6
dρLabelID
S3×C2×C34204S3xC2xC34408,44

Semidirect products G=N:Q with N=C34 and Q=D6
extensionφ:Q→Aut NdρLabelID
C341D6 = C2×S3×D17φ: D6/S3C2 ⊆ Aut C341024+C34:1D6408,41
C342D6 = C22×D51φ: D6/C6C2 ⊆ Aut C34204C34:2D6408,45

Non-split extensions G=N.Q with N=C34 and Q=D6
extensionφ:Q→Aut NdρLabelID
C34.1D6 = Dic3×D17φ: D6/S3C2 ⊆ Aut C342044-C34.1D6408,7
C34.2D6 = S3×Dic17φ: D6/S3C2 ⊆ Aut C342044-C34.2D6408,8
C34.3D6 = D512C4φ: D6/S3C2 ⊆ Aut C342044+C34.3D6408,9
C34.4D6 = C51⋊D4φ: D6/S3C2 ⊆ Aut C342044-C34.4D6408,10
C34.5D6 = C3⋊D68φ: D6/S3C2 ⊆ Aut C342044+C34.5D6408,11
C34.6D6 = C17⋊D12φ: D6/S3C2 ⊆ Aut C342044+C34.6D6408,12
C34.7D6 = C51⋊Q8φ: D6/S3C2 ⊆ Aut C344084-C34.7D6408,13
C34.8D6 = Dic102φ: D6/C6C2 ⊆ Aut C344082-C34.8D6408,25
C34.9D6 = C4×D51φ: D6/C6C2 ⊆ Aut C342042C34.9D6408,26
C34.10D6 = D204φ: D6/C6C2 ⊆ Aut C342042+C34.10D6408,27
C34.11D6 = C2×Dic51φ: D6/C6C2 ⊆ Aut C34408C34.11D6408,28
C34.12D6 = C517D4φ: D6/C6C2 ⊆ Aut C342042C34.12D6408,29
C34.13D6 = C17×Dic6central extension (φ=1)4082C34.13D6408,20
C34.14D6 = S3×C68central extension (φ=1)2042C34.14D6408,21
C34.15D6 = C17×D12central extension (φ=1)2042C34.15D6408,22
C34.16D6 = Dic3×C34central extension (φ=1)408C34.16D6408,23
C34.17D6 = C17×C3⋊D4central extension (φ=1)2042C34.17D6408,24

׿
×
𝔽