Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic13

Direct product G=N×Q with N=C4 and Q=C2×Dic13
dρLabelID
C2×C4×Dic13416C2xC4xDic13416,143

Semidirect products G=N:Q with N=C4 and Q=C2×Dic13
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic13) = D4×Dic13φ: C2×Dic13/Dic13C2 ⊆ Aut C4208C4:1(C2xDic13)416,155
C42(C2×Dic13) = C2×C523C4φ: C2×Dic13/C2×C26C2 ⊆ Aut C4416C4:2(C2xDic13)416,146

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic13
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic13) = D4⋊Dic13φ: C2×Dic13/Dic13C2 ⊆ Aut C4208C4.1(C2xDic13)416,39
C4.2(C2×Dic13) = Q8⋊Dic13φ: C2×Dic13/Dic13C2 ⊆ Aut C4416C4.2(C2xDic13)416,42
C4.3(C2×Dic13) = C52.56D4φ: C2×Dic13/Dic13C2 ⊆ Aut C41044C4.3(C2xDic13)416,44
C4.4(C2×Dic13) = Q8×Dic13φ: C2×Dic13/Dic13C2 ⊆ Aut C4416C4.4(C2xDic13)416,166
C4.5(C2×Dic13) = D4.Dic13φ: C2×Dic13/Dic13C2 ⊆ Aut C42084C4.5(C2xDic13)416,169
C4.6(C2×Dic13) = C1046C4φ: C2×Dic13/C2×C26C2 ⊆ Aut C4416C4.6(C2xDic13)416,24
C4.7(C2×Dic13) = C1045C4φ: C2×Dic13/C2×C26C2 ⊆ Aut C4416C4.7(C2xDic13)416,25
C4.8(C2×Dic13) = C104.6C4φ: C2×Dic13/C2×C26C2 ⊆ Aut C42082C4.8(C2xDic13)416,26
C4.9(C2×Dic13) = C2×C52.4C4φ: C2×Dic13/C2×C26C2 ⊆ Aut C4208C4.9(C2xDic13)416,142
C4.10(C2×Dic13) = C2×C132C16central extension (φ=1)416C4.10(C2xDic13)416,18
C4.11(C2×Dic13) = C52.4C8central extension (φ=1)2082C4.11(C2xDic13)416,19
C4.12(C2×Dic13) = C8×Dic13central extension (φ=1)416C4.12(C2xDic13)416,20
C4.13(C2×Dic13) = C1048C4central extension (φ=1)416C4.13(C2xDic13)416,22
C4.14(C2×Dic13) = C22×C132C8central extension (φ=1)416C4.14(C2xDic13)416,141
C4.15(C2×Dic13) = C23.21D26central extension (φ=1)208C4.15(C2xDic13)416,147

׿
×
𝔽