Extensions 1→N→G→Q→1 with N=D12 and Q=C3⋊S3

Direct product G=N×Q with N=D12 and Q=C3⋊S3
dρLabelID
C3⋊S3×D1272C3:S3xD12432,672

Semidirect products G=N:Q with N=D12 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
D121(C3⋊S3) = C337D8φ: C3⋊S3/C32C2 ⊆ Out D1272D12:1(C3:S3)432,437
D122(C3⋊S3) = C336D8φ: C3⋊S3/C32C2 ⊆ Out D12144D12:2(C3:S3)432,436
D123(C3⋊S3) = D12⋊(C3⋊S3)φ: C3⋊S3/C32C2 ⊆ Out D1272D12:3(C3:S3)432,662
D124(C3⋊S3) = C12⋊S32φ: C3⋊S3/C32C2 ⊆ Out D1272D12:4(C3:S3)432,673
D125(C3⋊S3) = (C3×D12)⋊S3φ: trivial image144D12:5(C3:S3)432,661

Non-split extensions G=N.Q with N=D12 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
D12.1(C3⋊S3) = C3314SD16φ: C3⋊S3/C32C2 ⊆ Out D12144D12.1(C3:S3)432,441
D12.2(C3⋊S3) = C3312SD16φ: C3⋊S3/C32C2 ⊆ Out D12144D12.2(C3:S3)432,439

׿
×
𝔽