Copied to
clipboard

G = (C3×D12)⋊S3order 432 = 24·33

6th semidirect product of C3×D12 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial

Aliases: C12.36S32, (C3×D12)⋊6S3, D125(C3⋊S3), (S3×C6).13D6, C336D45C2, C338Q86C2, (C3×C12).139D6, C3312(C4○D4), C3⋊Dic3.49D6, C34(D125S3), (C32×D12)⋊10C2, C32(C12.D6), C3223(C4○D12), (C32×C6).39C23, C335C4.8C22, C3212(D42S3), (C32×C12).41C22, (C4×C3⋊S3)⋊6S3, C6.49(C2×S32), (C12×C3⋊S3)⋊5C2, C4.12(S3×C3⋊S3), D6.1(C2×C3⋊S3), C12.34(C2×C3⋊S3), (S3×C3⋊Dic3)⋊9C2, (C2×C3⋊S3).42D6, C6.2(C22×C3⋊S3), (S3×C3×C6).14C22, (C6×C3⋊S3).50C22, (C3×C6).98(C22×S3), (C3×C3⋊Dic3).52C22, C2.6(C2×S3×C3⋊S3), SmallGroup(432,661)

Series: Derived Chief Lower central Upper central

C1C32×C6 — (C3×D12)⋊S3
C1C3C32C33C32×C6S3×C3×C6S3×C3⋊Dic3 — (C3×D12)⋊S3
C33C32×C6 — (C3×D12)⋊S3
C1C2C4

Generators and relations for (C3×D12)⋊S3
 G = < a,b,c,d,e | a3=b12=c2=d3=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, cbc=b-1, bd=db, be=eb, cd=dc, ece=b6c, ede=d-1 >

Subgroups: 1464 in 288 conjugacy classes, 68 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C2×C4, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C33, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, S3×C6, C2×C3⋊S3, C62, C4○D12, D42S3, S3×C32, C3×C3⋊S3, C32×C6, S3×Dic3, D6⋊S3, S3×C12, C3×D12, C324Q8, C4×C3⋊S3, C2×C3⋊Dic3, C327D4, D4×C32, C3×C3⋊Dic3, C335C4, C32×C12, S3×C3×C6, C6×C3⋊S3, D125S3, C12.D6, S3×C3⋊Dic3, C336D4, C32×D12, C12×C3⋊S3, C338Q8, (C3×D12)⋊S3
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, S32, C2×C3⋊S3, C4○D12, D42S3, C2×S32, C22×C3⋊S3, S3×C3⋊S3, D125S3, C12.D6, C2×S3×C3⋊S3, (C3×D12)⋊S3

Smallest permutation representation of (C3×D12)⋊S3
On 144 points
Generators in S144
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 41 45)(38 42 46)(39 43 47)(40 44 48)(49 53 57)(50 54 58)(51 55 59)(52 56 60)(61 69 65)(62 70 66)(63 71 67)(64 72 68)(73 81 77)(74 82 78)(75 83 79)(76 84 80)(85 93 89)(86 94 90)(87 95 91)(88 96 92)(97 105 101)(98 106 102)(99 107 103)(100 108 104)(109 117 113)(110 118 114)(111 119 115)(112 120 116)(121 129 125)(122 130 126)(123 131 127)(124 132 128)(133 137 141)(134 138 142)(135 139 143)(136 140 144)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 105)(2 104)(3 103)(4 102)(5 101)(6 100)(7 99)(8 98)(9 97)(10 108)(11 107)(12 106)(13 95)(14 94)(15 93)(16 92)(17 91)(18 90)(19 89)(20 88)(21 87)(22 86)(23 85)(24 96)(25 83)(26 82)(27 81)(28 80)(29 79)(30 78)(31 77)(32 76)(33 75)(34 74)(35 73)(36 84)(37 130)(38 129)(39 128)(40 127)(41 126)(42 125)(43 124)(44 123)(45 122)(46 121)(47 132)(48 131)(49 118)(50 117)(51 116)(52 115)(53 114)(54 113)(55 112)(56 111)(57 110)(58 109)(59 120)(60 119)(61 142)(62 141)(63 140)(64 139)(65 138)(66 137)(67 136)(68 135)(69 134)(70 133)(71 144)(72 143)
(1 37 52)(2 38 53)(3 39 54)(4 40 55)(5 41 56)(6 42 57)(7 43 58)(8 44 59)(9 45 60)(10 46 49)(11 47 50)(12 48 51)(13 139 28)(14 140 29)(15 141 30)(16 142 31)(17 143 32)(18 144 33)(19 133 34)(20 134 35)(21 135 36)(22 136 25)(23 137 26)(24 138 27)(61 77 92)(62 78 93)(63 79 94)(64 80 95)(65 81 96)(66 82 85)(67 83 86)(68 84 87)(69 73 88)(70 74 89)(71 75 90)(72 76 91)(97 122 119)(98 123 120)(99 124 109)(100 125 110)(101 126 111)(102 127 112)(103 128 113)(104 129 114)(105 130 115)(106 131 116)(107 132 117)(108 121 118)
(1 65)(2 66)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 61)(10 62)(11 63)(12 64)(13 125)(14 126)(15 127)(16 128)(17 129)(18 130)(19 131)(20 132)(21 121)(22 122)(23 123)(24 124)(25 119)(26 120)(27 109)(28 110)(29 111)(30 112)(31 113)(32 114)(33 115)(34 116)(35 117)(36 118)(37 96)(38 85)(39 86)(40 87)(41 88)(42 89)(43 90)(44 91)(45 92)(46 93)(47 94)(48 95)(49 78)(50 79)(51 80)(52 81)(53 82)(54 83)(55 84)(56 73)(57 74)(58 75)(59 76)(60 77)(97 136)(98 137)(99 138)(100 139)(101 140)(102 141)(103 142)(104 143)(105 144)(106 133)(107 134)(108 135)

G:=sub<Sym(144)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,81,77)(74,82,78)(75,83,79)(76,84,80)(85,93,89)(86,94,90)(87,95,91)(88,96,92)(97,105,101)(98,106,102)(99,107,103)(100,108,104)(109,117,113)(110,118,114)(111,119,115)(112,120,116)(121,129,125)(122,130,126)(123,131,127)(124,132,128)(133,137,141)(134,138,142)(135,139,143)(136,140,144), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,105)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,108)(11,107)(12,106)(13,95)(14,94)(15,93)(16,92)(17,91)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,96)(25,83)(26,82)(27,81)(28,80)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,84)(37,130)(38,129)(39,128)(40,127)(41,126)(42,125)(43,124)(44,123)(45,122)(46,121)(47,132)(48,131)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,112)(56,111)(57,110)(58,109)(59,120)(60,119)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,144)(72,143), (1,37,52)(2,38,53)(3,39,54)(4,40,55)(5,41,56)(6,42,57)(7,43,58)(8,44,59)(9,45,60)(10,46,49)(11,47,50)(12,48,51)(13,139,28)(14,140,29)(15,141,30)(16,142,31)(17,143,32)(18,144,33)(19,133,34)(20,134,35)(21,135,36)(22,136,25)(23,137,26)(24,138,27)(61,77,92)(62,78,93)(63,79,94)(64,80,95)(65,81,96)(66,82,85)(67,83,86)(68,84,87)(69,73,88)(70,74,89)(71,75,90)(72,76,91)(97,122,119)(98,123,120)(99,124,109)(100,125,110)(101,126,111)(102,127,112)(103,128,113)(104,129,114)(105,130,115)(106,131,116)(107,132,117)(108,121,118), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,61)(10,62)(11,63)(12,64)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,121)(22,122)(23,123)(24,124)(25,119)(26,120)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,96)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,78)(50,79)(51,80)(52,81)(53,82)(54,83)(55,84)(56,73)(57,74)(58,75)(59,76)(60,77)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,133)(107,134)(108,135)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,41,45)(38,42,46)(39,43,47)(40,44,48)(49,53,57)(50,54,58)(51,55,59)(52,56,60)(61,69,65)(62,70,66)(63,71,67)(64,72,68)(73,81,77)(74,82,78)(75,83,79)(76,84,80)(85,93,89)(86,94,90)(87,95,91)(88,96,92)(97,105,101)(98,106,102)(99,107,103)(100,108,104)(109,117,113)(110,118,114)(111,119,115)(112,120,116)(121,129,125)(122,130,126)(123,131,127)(124,132,128)(133,137,141)(134,138,142)(135,139,143)(136,140,144), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,105)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,108)(11,107)(12,106)(13,95)(14,94)(15,93)(16,92)(17,91)(18,90)(19,89)(20,88)(21,87)(22,86)(23,85)(24,96)(25,83)(26,82)(27,81)(28,80)(29,79)(30,78)(31,77)(32,76)(33,75)(34,74)(35,73)(36,84)(37,130)(38,129)(39,128)(40,127)(41,126)(42,125)(43,124)(44,123)(45,122)(46,121)(47,132)(48,131)(49,118)(50,117)(51,116)(52,115)(53,114)(54,113)(55,112)(56,111)(57,110)(58,109)(59,120)(60,119)(61,142)(62,141)(63,140)(64,139)(65,138)(66,137)(67,136)(68,135)(69,134)(70,133)(71,144)(72,143), (1,37,52)(2,38,53)(3,39,54)(4,40,55)(5,41,56)(6,42,57)(7,43,58)(8,44,59)(9,45,60)(10,46,49)(11,47,50)(12,48,51)(13,139,28)(14,140,29)(15,141,30)(16,142,31)(17,143,32)(18,144,33)(19,133,34)(20,134,35)(21,135,36)(22,136,25)(23,137,26)(24,138,27)(61,77,92)(62,78,93)(63,79,94)(64,80,95)(65,81,96)(66,82,85)(67,83,86)(68,84,87)(69,73,88)(70,74,89)(71,75,90)(72,76,91)(97,122,119)(98,123,120)(99,124,109)(100,125,110)(101,126,111)(102,127,112)(103,128,113)(104,129,114)(105,130,115)(106,131,116)(107,132,117)(108,121,118), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,61)(10,62)(11,63)(12,64)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,121)(22,122)(23,123)(24,124)(25,119)(26,120)(27,109)(28,110)(29,111)(30,112)(31,113)(32,114)(33,115)(34,116)(35,117)(36,118)(37,96)(38,85)(39,86)(40,87)(41,88)(42,89)(43,90)(44,91)(45,92)(46,93)(47,94)(48,95)(49,78)(50,79)(51,80)(52,81)(53,82)(54,83)(55,84)(56,73)(57,74)(58,75)(59,76)(60,77)(97,136)(98,137)(99,138)(100,139)(101,140)(102,141)(103,142)(104,143)(105,144)(106,133)(107,134)(108,135) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,41,45),(38,42,46),(39,43,47),(40,44,48),(49,53,57),(50,54,58),(51,55,59),(52,56,60),(61,69,65),(62,70,66),(63,71,67),(64,72,68),(73,81,77),(74,82,78),(75,83,79),(76,84,80),(85,93,89),(86,94,90),(87,95,91),(88,96,92),(97,105,101),(98,106,102),(99,107,103),(100,108,104),(109,117,113),(110,118,114),(111,119,115),(112,120,116),(121,129,125),(122,130,126),(123,131,127),(124,132,128),(133,137,141),(134,138,142),(135,139,143),(136,140,144)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,105),(2,104),(3,103),(4,102),(5,101),(6,100),(7,99),(8,98),(9,97),(10,108),(11,107),(12,106),(13,95),(14,94),(15,93),(16,92),(17,91),(18,90),(19,89),(20,88),(21,87),(22,86),(23,85),(24,96),(25,83),(26,82),(27,81),(28,80),(29,79),(30,78),(31,77),(32,76),(33,75),(34,74),(35,73),(36,84),(37,130),(38,129),(39,128),(40,127),(41,126),(42,125),(43,124),(44,123),(45,122),(46,121),(47,132),(48,131),(49,118),(50,117),(51,116),(52,115),(53,114),(54,113),(55,112),(56,111),(57,110),(58,109),(59,120),(60,119),(61,142),(62,141),(63,140),(64,139),(65,138),(66,137),(67,136),(68,135),(69,134),(70,133),(71,144),(72,143)], [(1,37,52),(2,38,53),(3,39,54),(4,40,55),(5,41,56),(6,42,57),(7,43,58),(8,44,59),(9,45,60),(10,46,49),(11,47,50),(12,48,51),(13,139,28),(14,140,29),(15,141,30),(16,142,31),(17,143,32),(18,144,33),(19,133,34),(20,134,35),(21,135,36),(22,136,25),(23,137,26),(24,138,27),(61,77,92),(62,78,93),(63,79,94),(64,80,95),(65,81,96),(66,82,85),(67,83,86),(68,84,87),(69,73,88),(70,74,89),(71,75,90),(72,76,91),(97,122,119),(98,123,120),(99,124,109),(100,125,110),(101,126,111),(102,127,112),(103,128,113),(104,129,114),(105,130,115),(106,131,116),(107,132,117),(108,121,118)], [(1,65),(2,66),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,61),(10,62),(11,63),(12,64),(13,125),(14,126),(15,127),(16,128),(17,129),(18,130),(19,131),(20,132),(21,121),(22,122),(23,123),(24,124),(25,119),(26,120),(27,109),(28,110),(29,111),(30,112),(31,113),(32,114),(33,115),(34,116),(35,117),(36,118),(37,96),(38,85),(39,86),(40,87),(41,88),(42,89),(43,90),(44,91),(45,92),(46,93),(47,94),(48,95),(49,78),(50,79),(51,80),(52,81),(53,82),(54,83),(55,84),(56,73),(57,74),(58,75),(59,76),(60,77),(97,136),(98,137),(99,138),(100,139),(101,140),(102,141),(103,142),(104,143),(105,144),(106,133),(107,134),(108,135)]])

54 conjugacy classes

class 1 2A2B2C2D3A···3E3F3G3H3I4A4B4C4D4E6A···6E6F6G6H6I6J···6Q6R6S12A12B12C···12N12O12P
order122223···33333444446···666666···666121212···121212
size1166182···2444429954542···2444412···121818224···41818

54 irreducible representations

dim111111222222224444
type+++++++++++++-+-
imageC1C2C2C2C2C2S3S3D6D6D6D6C4○D4C4○D12S32D42S3C2×S32D125S3
kernel(C3×D12)⋊S3S3×C3⋊Dic3C336D4C32×D12C12×C3⋊S3C338Q8C3×D12C4×C3⋊S3C3⋊Dic3C3×C12S3×C6C2×C3⋊S3C33C32C12C32C6C3
# reps122111411581244448

Matrix representation of (C3×D12)⋊S3 in GL8(𝔽13)

10000000
01000000
00100000
00010000
00001000
00000100
00000001
0000001212
,
80000000
85000000
00100000
00010000
00000100
000012100
00000010
00000001
,
53000000
58000000
001200000
000120000
000012100
00000100
00000010
00000001
,
10000000
01000000
000120000
001120000
00001000
00000100
00000001
0000001212
,
10000000
112000000
00730000
001060000
000012000
000001200
00000010
0000001212

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[8,8,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[5,5,0,0,0,0,0,0,3,8,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[1,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12] >;

(C3×D12)⋊S3 in GAP, Magma, Sage, TeX

(C_3\times D_{12})\rtimes S_3
% in TeX

G:=Group("(C3xD12):S3");
// GroupNames label

G:=SmallGroup(432,661);
// by ID

G=gap.SmallGroup(432,661);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^12=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^6*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽