Extensions 1→N→G→Q→1 with N=C2xC36 and Q=S3

Direct product G=NxQ with N=C2xC36 and Q=S3
dρLabelID
S3xC2xC36144S3xC2xC36432,345

Semidirect products G=N:Q with N=C2xC36 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC36):1S3 = C9xD6:C4φ: S3/C3C2 ⊆ Aut C2xC36144(C2xC36):1S3432,135
(C2xC36):2S3 = C6.11D36φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36):2S3432,183
(C2xC36):3S3 = C2xC36:S3φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36):3S3432,382
(C2xC36):4S3 = C36.70D6φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36):4S3432,383
(C2xC36):5S3 = C2xC4xC9:S3φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36):5S3432,381
(C2xC36):6S3 = C18xD12φ: S3/C3C2 ⊆ Aut C2xC36144(C2xC36):6S3432,346
(C2xC36):7S3 = C9xC4oD12φ: S3/C3C2 ⊆ Aut C2xC36722(C2xC36):7S3432,347

Non-split extensions G=N.Q with N=C2xC36 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC36).1S3 = Dic27:C4φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).1S3432,12
(C2xC36).2S3 = D54:C4φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36).2S3432,14
(C2xC36).3S3 = C9xDic3:C4φ: S3/C3C2 ⊆ Aut C2xC36144(C2xC36).3S3432,132
(C2xC36).4S3 = C6.Dic18φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).4S3432,181
(C2xC36).5S3 = C4:Dic27φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).5S3432,13
(C2xC36).6S3 = C2xDic54φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).6S3432,43
(C2xC36).7S3 = C2xD108φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36).7S3432,45
(C2xC36).8S3 = C36:Dic3φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).8S3432,182
(C2xC36).9S3 = C2xC12.D9φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).9S3432,380
(C2xC36).10S3 = C4.Dic27φ: S3/C3C2 ⊆ Aut C2xC362162(C2xC36).10S3432,10
(C2xC36).11S3 = D108:5C2φ: S3/C3C2 ⊆ Aut C2xC362162(C2xC36).11S3432,46
(C2xC36).12S3 = C36.69D6φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36).12S3432,179
(C2xC36).13S3 = C2xC27:C8φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).13S3432,9
(C2xC36).14S3 = C4xDic27φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).14S3432,11
(C2xC36).15S3 = C2xC4xD27φ: S3/C3C2 ⊆ Aut C2xC36216(C2xC36).15S3432,44
(C2xC36).16S3 = C2xC36.S3φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).16S3432,178
(C2xC36).17S3 = C4xC9:Dic3φ: S3/C3C2 ⊆ Aut C2xC36432(C2xC36).17S3432,180
(C2xC36).18S3 = C9xC4.Dic3φ: S3/C3C2 ⊆ Aut C2xC36722(C2xC36).18S3432,127
(C2xC36).19S3 = C9xC4:Dic3φ: S3/C3C2 ⊆ Aut C2xC36144(C2xC36).19S3432,133
(C2xC36).20S3 = C18xDic6φ: S3/C3C2 ⊆ Aut C2xC36144(C2xC36).20S3432,341
(C2xC36).21S3 = C18xC3:C8central extension (φ=1)144(C2xC36).21S3432,126
(C2xC36).22S3 = Dic3xC36central extension (φ=1)144(C2xC36).22S3432,131

׿
x
:
Z
F
o
wr
Q
<