Copied to
clipboard

G = C9×Dic3⋊C4order 432 = 24·33

Direct product of C9 and Dic3⋊C4

direct product, metabelian, supersoluble, monomial

Aliases: C9×Dic3⋊C4, Dic3⋊C36, C18.9Dic6, C6.5(D4×C9), C6.1(Q8×C9), C2.4(S3×C36), (C6×C36).4C2, C6.3(C2×C36), (C2×C36).3S3, (C3×C18).4Q8, C6.36(S3×C12), C18.24(C4×S3), (C2×C12).2C18, (C6×C12).21C6, (C9×Dic3)⋊3C4, (C2×C18).47D6, (C3×C18).33D4, C2.1(C9×Dic6), C62.49(C2×C6), C22.4(S3×C18), (C6×Dic3).1C6, C6.14(C3×Dic6), C18.29(C3⋊D4), (C6×C18).22C22, (C3×Dic3).4C12, (Dic3×C18).3C2, (C2×Dic3).1C18, C31(C9×C4⋊C4), (C3×C9)⋊4(C4⋊C4), (C2×C4).1(S3×C9), C2.1(C9×C3⋊D4), (C3×C6).9(C3×Q8), (C2×C6).81(S3×C6), (C2×C12).2(C3×S3), (C2×C6).7(C2×C18), (C3×C6).53(C3×D4), (C3×Dic3⋊C4).C3, C6.43(C3×C3⋊D4), C32.2(C3×C4⋊C4), (C3×C6).40(C2×C12), (C3×C18).16(C2×C4), C3.4(C3×Dic3⋊C4), SmallGroup(432,132)

Series: Derived Chief Lower central Upper central

C1C6 — C9×Dic3⋊C4
C1C3C32C3×C6C62C6×C18Dic3×C18 — C9×Dic3⋊C4
C3C6 — C9×Dic3⋊C4
C1C2×C18C2×C36

Generators and relations for C9×Dic3⋊C4
 G = < a,b,c,d | a9=b6=d4=1, c2=b3, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=b3c >

Subgroups: 164 in 94 conjugacy classes, 51 normal (45 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C2×C4, C9, C9, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C18, C18, C3×C6, C2×Dic3, C2×C12, C2×C12, C3×C9, C36, C2×C18, C2×C18, C3×Dic3, C3×Dic3, C3×C12, C62, Dic3⋊C4, C3×C4⋊C4, C3×C18, C2×C36, C2×C36, C6×Dic3, C6×C12, C9×Dic3, C9×Dic3, C3×C36, C6×C18, C9×C4⋊C4, C3×Dic3⋊C4, Dic3×C18, C6×C36, C9×Dic3⋊C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, C9, C12, D6, C2×C6, C4⋊C4, C18, C3×S3, Dic6, C4×S3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C36, C2×C18, S3×C6, Dic3⋊C4, C3×C4⋊C4, S3×C9, C2×C36, D4×C9, Q8×C9, C3×Dic6, S3×C12, C3×C3⋊D4, S3×C18, C9×C4⋊C4, C3×Dic3⋊C4, C9×Dic6, S3×C36, C9×C3⋊D4, C9×Dic3⋊C4

Smallest permutation representation of C9×Dic3⋊C4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 41 7 38 4 44)(2 42 8 39 5 45)(3 43 9 40 6 37)(10 136 13 139 16 142)(11 137 14 140 17 143)(12 138 15 141 18 144)(19 129 22 132 25 135)(20 130 23 133 26 127)(21 131 24 134 27 128)(28 53 34 50 31 47)(29 54 35 51 32 48)(30 46 36 52 33 49)(55 84 61 90 58 87)(56 85 62 82 59 88)(57 86 63 83 60 89)(64 80 70 77 67 74)(65 81 71 78 68 75)(66 73 72 79 69 76)(91 123 94 126 97 120)(92 124 95 118 98 121)(93 125 96 119 99 122)(100 110 103 113 106 116)(101 111 104 114 107 117)(102 112 105 115 108 109)
(1 125 38 99)(2 126 39 91)(3 118 40 92)(4 119 41 93)(5 120 42 94)(6 121 43 95)(7 122 44 96)(8 123 45 97)(9 124 37 98)(10 63 139 89)(11 55 140 90)(12 56 141 82)(13 57 142 83)(14 58 143 84)(15 59 144 85)(16 60 136 86)(17 61 137 87)(18 62 138 88)(19 64 132 77)(20 65 133 78)(21 66 134 79)(22 67 135 80)(23 68 127 81)(24 69 128 73)(25 70 129 74)(26 71 130 75)(27 72 131 76)(28 100 50 113)(29 101 51 114)(30 102 52 115)(31 103 53 116)(32 104 54 117)(33 105 46 109)(34 106 47 110)(35 107 48 111)(36 108 49 112)
(1 63 31 80)(2 55 32 81)(3 56 33 73)(4 57 34 74)(5 58 35 75)(6 59 36 76)(7 60 28 77)(8 61 29 78)(9 62 30 79)(10 103 135 125)(11 104 127 126)(12 105 128 118)(13 106 129 119)(14 107 130 120)(15 108 131 121)(16 100 132 122)(17 101 133 123)(18 102 134 124)(19 96 136 113)(20 97 137 114)(21 98 138 115)(22 99 139 116)(23 91 140 117)(24 92 141 109)(25 93 142 110)(26 94 143 111)(27 95 144 112)(37 88 52 66)(38 89 53 67)(39 90 54 68)(40 82 46 69)(41 83 47 70)(42 84 48 71)(43 85 49 72)(44 86 50 64)(45 87 51 65)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,41,7,38,4,44)(2,42,8,39,5,45)(3,43,9,40,6,37)(10,136,13,139,16,142)(11,137,14,140,17,143)(12,138,15,141,18,144)(19,129,22,132,25,135)(20,130,23,133,26,127)(21,131,24,134,27,128)(28,53,34,50,31,47)(29,54,35,51,32,48)(30,46,36,52,33,49)(55,84,61,90,58,87)(56,85,62,82,59,88)(57,86,63,83,60,89)(64,80,70,77,67,74)(65,81,71,78,68,75)(66,73,72,79,69,76)(91,123,94,126,97,120)(92,124,95,118,98,121)(93,125,96,119,99,122)(100,110,103,113,106,116)(101,111,104,114,107,117)(102,112,105,115,108,109), (1,125,38,99)(2,126,39,91)(3,118,40,92)(4,119,41,93)(5,120,42,94)(6,121,43,95)(7,122,44,96)(8,123,45,97)(9,124,37,98)(10,63,139,89)(11,55,140,90)(12,56,141,82)(13,57,142,83)(14,58,143,84)(15,59,144,85)(16,60,136,86)(17,61,137,87)(18,62,138,88)(19,64,132,77)(20,65,133,78)(21,66,134,79)(22,67,135,80)(23,68,127,81)(24,69,128,73)(25,70,129,74)(26,71,130,75)(27,72,131,76)(28,100,50,113)(29,101,51,114)(30,102,52,115)(31,103,53,116)(32,104,54,117)(33,105,46,109)(34,106,47,110)(35,107,48,111)(36,108,49,112), (1,63,31,80)(2,55,32,81)(3,56,33,73)(4,57,34,74)(5,58,35,75)(6,59,36,76)(7,60,28,77)(8,61,29,78)(9,62,30,79)(10,103,135,125)(11,104,127,126)(12,105,128,118)(13,106,129,119)(14,107,130,120)(15,108,131,121)(16,100,132,122)(17,101,133,123)(18,102,134,124)(19,96,136,113)(20,97,137,114)(21,98,138,115)(22,99,139,116)(23,91,140,117)(24,92,141,109)(25,93,142,110)(26,94,143,111)(27,95,144,112)(37,88,52,66)(38,89,53,67)(39,90,54,68)(40,82,46,69)(41,83,47,70)(42,84,48,71)(43,85,49,72)(44,86,50,64)(45,87,51,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,41,7,38,4,44)(2,42,8,39,5,45)(3,43,9,40,6,37)(10,136,13,139,16,142)(11,137,14,140,17,143)(12,138,15,141,18,144)(19,129,22,132,25,135)(20,130,23,133,26,127)(21,131,24,134,27,128)(28,53,34,50,31,47)(29,54,35,51,32,48)(30,46,36,52,33,49)(55,84,61,90,58,87)(56,85,62,82,59,88)(57,86,63,83,60,89)(64,80,70,77,67,74)(65,81,71,78,68,75)(66,73,72,79,69,76)(91,123,94,126,97,120)(92,124,95,118,98,121)(93,125,96,119,99,122)(100,110,103,113,106,116)(101,111,104,114,107,117)(102,112,105,115,108,109), (1,125,38,99)(2,126,39,91)(3,118,40,92)(4,119,41,93)(5,120,42,94)(6,121,43,95)(7,122,44,96)(8,123,45,97)(9,124,37,98)(10,63,139,89)(11,55,140,90)(12,56,141,82)(13,57,142,83)(14,58,143,84)(15,59,144,85)(16,60,136,86)(17,61,137,87)(18,62,138,88)(19,64,132,77)(20,65,133,78)(21,66,134,79)(22,67,135,80)(23,68,127,81)(24,69,128,73)(25,70,129,74)(26,71,130,75)(27,72,131,76)(28,100,50,113)(29,101,51,114)(30,102,52,115)(31,103,53,116)(32,104,54,117)(33,105,46,109)(34,106,47,110)(35,107,48,111)(36,108,49,112), (1,63,31,80)(2,55,32,81)(3,56,33,73)(4,57,34,74)(5,58,35,75)(6,59,36,76)(7,60,28,77)(8,61,29,78)(9,62,30,79)(10,103,135,125)(11,104,127,126)(12,105,128,118)(13,106,129,119)(14,107,130,120)(15,108,131,121)(16,100,132,122)(17,101,133,123)(18,102,134,124)(19,96,136,113)(20,97,137,114)(21,98,138,115)(22,99,139,116)(23,91,140,117)(24,92,141,109)(25,93,142,110)(26,94,143,111)(27,95,144,112)(37,88,52,66)(38,89,53,67)(39,90,54,68)(40,82,46,69)(41,83,47,70)(42,84,48,71)(43,85,49,72)(44,86,50,64)(45,87,51,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,41,7,38,4,44),(2,42,8,39,5,45),(3,43,9,40,6,37),(10,136,13,139,16,142),(11,137,14,140,17,143),(12,138,15,141,18,144),(19,129,22,132,25,135),(20,130,23,133,26,127),(21,131,24,134,27,128),(28,53,34,50,31,47),(29,54,35,51,32,48),(30,46,36,52,33,49),(55,84,61,90,58,87),(56,85,62,82,59,88),(57,86,63,83,60,89),(64,80,70,77,67,74),(65,81,71,78,68,75),(66,73,72,79,69,76),(91,123,94,126,97,120),(92,124,95,118,98,121),(93,125,96,119,99,122),(100,110,103,113,106,116),(101,111,104,114,107,117),(102,112,105,115,108,109)], [(1,125,38,99),(2,126,39,91),(3,118,40,92),(4,119,41,93),(5,120,42,94),(6,121,43,95),(7,122,44,96),(8,123,45,97),(9,124,37,98),(10,63,139,89),(11,55,140,90),(12,56,141,82),(13,57,142,83),(14,58,143,84),(15,59,144,85),(16,60,136,86),(17,61,137,87),(18,62,138,88),(19,64,132,77),(20,65,133,78),(21,66,134,79),(22,67,135,80),(23,68,127,81),(24,69,128,73),(25,70,129,74),(26,71,130,75),(27,72,131,76),(28,100,50,113),(29,101,51,114),(30,102,52,115),(31,103,53,116),(32,104,54,117),(33,105,46,109),(34,106,47,110),(35,107,48,111),(36,108,49,112)], [(1,63,31,80),(2,55,32,81),(3,56,33,73),(4,57,34,74),(5,58,35,75),(6,59,36,76),(7,60,28,77),(8,61,29,78),(9,62,30,79),(10,103,135,125),(11,104,127,126),(12,105,128,118),(13,106,129,119),(14,107,130,120),(15,108,131,121),(16,100,132,122),(17,101,133,123),(18,102,134,124),(19,96,136,113),(20,97,137,114),(21,98,138,115),(22,99,139,116),(23,91,140,117),(24,92,141,109),(25,93,142,110),(26,94,143,111),(27,95,144,112),(37,88,52,66),(38,89,53,67),(39,90,54,68),(40,82,46,69),(41,83,47,70),(42,84,48,71),(43,85,49,72),(44,86,50,64),(45,87,51,65)]])

162 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E4F6A···6F6G···6O9A···9F9G···9L12A···12P12Q···12X18A···18R18S···18AJ36A···36AJ36AK···36BH
order1222333334444446···66···69···99···912···1212···1218···1818···1836···3636···36
size1111112222266661···12···21···12···22···26···61···12···22···26···6

162 irreducible representations

dim111111111111222222222222222222222
type+++++-+-
imageC1C2C2C3C4C6C6C9C12C18C18C36S3D4Q8D6C3×S3Dic6C4×S3C3⋊D4C3×D4C3×Q8S3×C6S3×C9D4×C9Q8×C9C3×Dic6S3×C12C3×C3⋊D4S3×C18C9×Dic6S3×C36C9×C3⋊D4
kernelC9×Dic3⋊C4Dic3×C18C6×C36C3×Dic3⋊C4C9×Dic3C6×Dic3C6×C12Dic3⋊C4C3×Dic3C2×Dic3C2×C12Dic3C2×C36C3×C18C3×C18C2×C18C2×C12C18C18C18C3×C6C3×C6C2×C6C2×C4C6C6C6C6C6C22C2C2C2
# reps12124426812624111122222226664446121212

Matrix representation of C9×Dic3⋊C4 in GL3(𝔽37) generated by

3300
0340
0034
,
100
0270
0011
,
3600
0036
010
,
3100
0310
006
G:=sub<GL(3,GF(37))| [33,0,0,0,34,0,0,0,34],[1,0,0,0,27,0,0,0,11],[36,0,0,0,0,1,0,36,0],[31,0,0,0,31,0,0,0,6] >;

C9×Dic3⋊C4 in GAP, Magma, Sage, TeX

C_9\times {\rm Dic}_3\rtimes C_4
% in TeX

G:=Group("C9xDic3:C4");
// GroupNames label

G:=SmallGroup(432,132);
// by ID

G=gap.SmallGroup(432,132);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,365,92,268,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^6=d^4=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^3*c>;
// generators/relations

׿
×
𝔽