Extensions 1→N→G→Q→1 with N=C2xC12 and Q=C18

Direct product G=NxQ with N=C2xC12 and Q=C18
dρLabelID
C2xC6xC36432C2xC6xC36432,400

Semidirect products G=N:Q with N=C2xC12 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C2xC12):1C18 = C9xD6:C4φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12):1C18432,135
(C2xC12):2C18 = C22:C4xC3xC9φ: C18/C9C2 ⊆ Aut C2xC12216(C2xC12):2C18432,203
(C2xC12):3C18 = C18xD12φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12):3C18432,346
(C2xC12):4C18 = C9xC4oD12φ: C18/C9C2 ⊆ Aut C2xC12722(C2xC12):4C18432,347
(C2xC12):5C18 = S3xC2xC36φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12):5C18432,345
(C2xC12):6C18 = D4xC3xC18φ: C18/C9C2 ⊆ Aut C2xC12216(C2xC12):6C18432,403
(C2xC12):7C18 = C4oD4xC3xC9φ: C18/C9C2 ⊆ Aut C2xC12216(C2xC12):7C18432,409

Non-split extensions G=N.Q with N=C2xC12 and Q=C18
extensionφ:Q→Aut NdρLabelID
(C2xC12).1C18 = C22:C4xC27φ: C18/C9C2 ⊆ Aut C2xC12216(C2xC12).1C18432,21
(C2xC12).2C18 = C9xDic3:C4φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12).2C18432,132
(C2xC12).3C18 = C9xC4:Dic3φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12).3C18432,133
(C2xC12).4C18 = C18xDic6φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12).4C18432,341
(C2xC12).5C18 = C9xC4.Dic3φ: C18/C9C2 ⊆ Aut C2xC12722(C2xC12).5C18432,127
(C2xC12).6C18 = C18xC3:C8φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12).6C18432,126
(C2xC12).7C18 = Dic3xC36φ: C18/C9C2 ⊆ Aut C2xC12144(C2xC12).7C18432,131
(C2xC12).8C18 = C4:C4xC27φ: C18/C9C2 ⊆ Aut C2xC12432(C2xC12).8C18432,22
(C2xC12).9C18 = M4(2)xC27φ: C18/C9C2 ⊆ Aut C2xC122162(C2xC12).9C18432,24
(C2xC12).10C18 = D4xC54φ: C18/C9C2 ⊆ Aut C2xC12216(C2xC12).10C18432,54
(C2xC12).11C18 = Q8xC54φ: C18/C9C2 ⊆ Aut C2xC12432(C2xC12).11C18432,55
(C2xC12).12C18 = C4oD4xC27φ: C18/C9C2 ⊆ Aut C2xC122162(C2xC12).12C18432,56
(C2xC12).13C18 = C4:C4xC3xC9φ: C18/C9C2 ⊆ Aut C2xC12432(C2xC12).13C18432,206
(C2xC12).14C18 = M4(2)xC3xC9φ: C18/C9C2 ⊆ Aut C2xC12216(C2xC12).14C18432,212
(C2xC12).15C18 = Q8xC3xC18φ: C18/C9C2 ⊆ Aut C2xC12432(C2xC12).15C18432,406

׿
x
:
Z
F
o
wr
Q
<