Extensions 1→N→G→Q→1 with N=C9⋊Dic3 and Q=C4

Direct product G=N×Q with N=C9⋊Dic3 and Q=C4
dρLabelID
C4×C9⋊Dic3432C4xC9:Dic3432,180

Semidirect products G=N:Q with N=C9⋊Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
C9⋊Dic31C4 = Dic3×Dic9φ: C4/C2C2 ⊆ Out C9⋊Dic3144C9:Dic3:1C4432,87
C9⋊Dic32C4 = C18.Dic6φ: C4/C2C2 ⊆ Out C9⋊Dic3144C9:Dic3:2C4432,89
C9⋊Dic33C4 = C6.Dic18φ: C4/C2C2 ⊆ Out C9⋊Dic3432C9:Dic3:3C4432,181

Non-split extensions G=N.Q with N=C9⋊Dic3 and Q=C4
extensionφ:Q→Out NdρLabelID
C9⋊Dic3.1C4 = C36.38D6φ: C4/C2C2 ⊆ Out C9⋊Dic3724C9:Dic3.1C4432,59
C9⋊Dic3.2C4 = C36.40D6φ: C4/C2C2 ⊆ Out C9⋊Dic3724C9:Dic3.2C4432,61
C9⋊Dic3.3C4 = C72⋊S3φ: C4/C2C2 ⊆ Out C9⋊Dic3216C9:Dic3.3C4432,170
C9⋊Dic3.4C4 = C8×C9⋊S3φ: trivial image216C9:Dic3.4C4432,169

׿
×
𝔽