Copied to
clipboard

G = C36.38D6order 432 = 24·33

9th non-split extension by C36 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, A-group

Aliases: C36.38D6, C12.38D18, C9⋊S3⋊C8, C9⋊C86S3, C3⋊C86D9, C91(S3×C8), C31(C8×D9), C12.60S32, C6.1(C4×D9), C18.1(C4×S3), C4.23(S3×D9), C9⋊Dic3.1C4, C32.3(S3×C8), (C3×C12).156D6, (C3×C36).37C22, C6.1(C6.D6), C2.1(C18.D6), C3.1(C12.29D6), (C3×C9⋊C8)⋊7C2, (C9×C3⋊C8)⋊5C2, (C3×C9)⋊2(C2×C8), (C3×C3⋊C8).8S3, (C2×C9⋊S3).1C4, (C4×C9⋊S3).3C2, (C3×C18).2(C2×C4), (C3×C6).34(C4×S3), SmallGroup(432,59)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C36.38D6
C1C3C32C3×C9C3×C18C3×C36C9×C3⋊C8 — C36.38D6
C3×C9 — C36.38D6
C1C4

Generators and relations for C36.38D6
 G = < a,b,c | a36=1, b6=a27, c2=a18, bab-1=cac-1=a17, cbc-1=a18b5 >

Subgroups: 500 in 82 conjugacy classes, 29 normal (27 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, C2×C8, D9, C18, C18, C3⋊S3, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C3×C9, Dic9, C36, C36, D18, C3⋊Dic3, C3×C12, C2×C3⋊S3, S3×C8, C9⋊S3, C3×C18, C9⋊C8, C72, C4×D9, C3×C3⋊C8, C3×C3⋊C8, C4×C3⋊S3, C9⋊Dic3, C3×C36, C2×C9⋊S3, C8×D9, C12.29D6, C3×C9⋊C8, C9×C3⋊C8, C4×C9⋊S3, C36.38D6
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D6, C2×C8, D9, C4×S3, D18, S32, S3×C8, C4×D9, C6.D6, S3×D9, C8×D9, C12.29D6, C18.D6, C36.38D6

Smallest permutation representation of C36.38D6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 49 22 46 7 43 28 40 13 37 34 70 19 67 4 64 25 61 10 58 31 55 16 52)(2 66 23 63 8 60 29 57 14 54 35 51 20 48 5 45 26 42 11 39 32 72 17 69)(3 47 24 44 9 41 30 38 15 71 36 68 21 65 6 62 27 59 12 56 33 53 18 50)
(1 4 19 22)(2 21 20 3)(5 36 23 18)(6 17 24 35)(7 34 25 16)(8 15 26 33)(9 32 27 14)(10 13 28 31)(11 30 29 12)(37 52 55 70)(38 69 56 51)(39 50 57 68)(40 67 58 49)(41 48 59 66)(42 65 60 47)(43 46 61 64)(44 63 62 45)(53 72 71 54)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,49,22,46,7,43,28,40,13,37,34,70,19,67,4,64,25,61,10,58,31,55,16,52)(2,66,23,63,8,60,29,57,14,54,35,51,20,48,5,45,26,42,11,39,32,72,17,69)(3,47,24,44,9,41,30,38,15,71,36,68,21,65,6,62,27,59,12,56,33,53,18,50), (1,4,19,22)(2,21,20,3)(5,36,23,18)(6,17,24,35)(7,34,25,16)(8,15,26,33)(9,32,27,14)(10,13,28,31)(11,30,29,12)(37,52,55,70)(38,69,56,51)(39,50,57,68)(40,67,58,49)(41,48,59,66)(42,65,60,47)(43,46,61,64)(44,63,62,45)(53,72,71,54)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,49,22,46,7,43,28,40,13,37,34,70,19,67,4,64,25,61,10,58,31,55,16,52)(2,66,23,63,8,60,29,57,14,54,35,51,20,48,5,45,26,42,11,39,32,72,17,69)(3,47,24,44,9,41,30,38,15,71,36,68,21,65,6,62,27,59,12,56,33,53,18,50), (1,4,19,22)(2,21,20,3)(5,36,23,18)(6,17,24,35)(7,34,25,16)(8,15,26,33)(9,32,27,14)(10,13,28,31)(11,30,29,12)(37,52,55,70)(38,69,56,51)(39,50,57,68)(40,67,58,49)(41,48,59,66)(42,65,60,47)(43,46,61,64)(44,63,62,45)(53,72,71,54) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,49,22,46,7,43,28,40,13,37,34,70,19,67,4,64,25,61,10,58,31,55,16,52),(2,66,23,63,8,60,29,57,14,54,35,51,20,48,5,45,26,42,11,39,32,72,17,69),(3,47,24,44,9,41,30,38,15,71,36,68,21,65,6,62,27,59,12,56,33,53,18,50)], [(1,4,19,22),(2,21,20,3),(5,36,23,18),(6,17,24,35),(7,34,25,16),(8,15,26,33),(9,32,27,14),(10,13,28,31),(11,30,29,12),(37,52,55,70),(38,69,56,51),(39,50,57,68),(40,67,58,49),(41,48,59,66),(42,65,60,47),(43,46,61,64),(44,63,62,45),(53,72,71,54)]])

72 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B6C8A8B8C8D8E8F8G8H9A9B9C9D9E9F12A12B12C12D12E12F18A18B18C18D18E18F24A24B24C24D24E24F24G24H36A···36F36G···36L72A···72L
order1222333444466688888888999999121212121212181818181818242424242424242436···3636···3672···72
size112727224112727224333399992224442222442224446666181818182···24···46···6

72 irreducible representations

dim1111111222222222222444444
type++++++++++++++
imageC1C2C2C2C4C4C8S3S3D6D6D9C4×S3C4×S3D18S3×C8S3×C8C4×D9C8×D9S32C6.D6S3×D9C12.29D6C18.D6C36.38D6
kernelC36.38D6C3×C9⋊C8C9×C3⋊C8C4×C9⋊S3C9⋊Dic3C2×C9⋊S3C9⋊S3C9⋊C8C3×C3⋊C8C36C3×C12C3⋊C8C18C3×C6C12C9C32C6C3C12C6C4C3C2C1
# reps11112281111322344612113236

Matrix representation of C36.38D6 in GL4(𝔽73) generated by

1000
0100
003947
002665
,
07200
1100
00630
001010
,
0100
1000
00270
004646
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,39,26,0,0,47,65],[0,1,0,0,72,1,0,0,0,0,63,10,0,0,0,10],[0,1,0,0,1,0,0,0,0,0,27,46,0,0,0,46] >;

C36.38D6 in GAP, Magma, Sage, TeX

C_{36}._{38}D_6
% in TeX

G:=Group("C36.38D6");
// GroupNames label

G:=SmallGroup(432,59);
// by ID

G=gap.SmallGroup(432,59);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,36,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c|a^36=1,b^6=a^27,c^2=a^18,b*a*b^-1=c*a*c^-1=a^17,c*b*c^-1=a^18*b^5>;
// generators/relations

׿
×
𝔽