Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=C3×D4

Direct product G=N×Q with N=C3⋊S3 and Q=C3×D4
dρLabelID
C3×D4×C3⋊S372C3xD4xC3:S3432,714

Semidirect products G=N:Q with N=C3⋊S3 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊(C3×D4) = C6×S3≀C2φ: C3×D4/C6C22 ⊆ Out C3⋊S3244C3:S3:(C3xD4)432,754
C3⋊S32(C3×D4) = D4×C32⋊C6φ: C3×D4/D4C3 ⊆ Out C3⋊S33612+C3:S3:2(C3xD4)432,360
C3⋊S33(C3×D4) = C3×D6⋊D6φ: C3×D4/C12C2 ⊆ Out C3⋊S3484C3:S3:3(C3xD4)432,650
C3⋊S34(C3×D4) = C3×Dic3⋊D6φ: C3×D4/C2×C6C2 ⊆ Out C3⋊S3244C3:S3:4(C3xD4)432,659

Non-split extensions G=N.Q with N=C3⋊S3 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
C3⋊S3.(C3×D4) = C3×AΓL1(𝔽9)φ: C3×D4/C3D4 ⊆ Out C3⋊S3248C3:S3.(C3xD4)432,737
C3⋊S3.2(C3×D4) = C3×S32⋊C4φ: C3×D4/C6C22 ⊆ Out C3⋊S3244C3:S3.2(C3xD4)432,574
C3⋊S3.3(C3×D4) = C3×C2.PSU3(𝔽2)φ: C3×D4/C6C22 ⊆ Out C3⋊S3488C3:S3.3(C3xD4)432,591
C3⋊S3.4(C3×D4) = C3×C4⋊(C32⋊C4)φ: C3×D4/C12C2 ⊆ Out C3⋊S3484C3:S3.4(C3xD4)432,631
C3⋊S3.5(C3×D4) = C3×C62⋊C4φ: C3×D4/C2×C6C2 ⊆ Out C3⋊S3244C3:S3.5(C3xD4)432,634

׿
×
𝔽