direct product, non-abelian, soluble, monomial
Aliases: C3×AΓL1(𝔽9), F9⋊C6, C33⋊1SD16, PSU3(𝔽2)⋊2C6, S3≀C2.C6, (C3×F9)⋊3C2, C32⋊(C3×SD16), (C3×PSU3(𝔽2))⋊3C2, C3⋊S3.(C3×D4), C32⋊C4.(C2×C6), (C3×C3⋊S3).1D4, (C3×S3≀C2).2C2, (C3×C32⋊C4).6C22, SmallGroup(432,737)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C32⋊C4 — C3×AΓL1(𝔽9) |
C1 — C32 — C3⋊S3 — C32⋊C4 — C3×C32⋊C4 — C3×F9 — C3×AΓL1(𝔽9) |
C32 — C3⋊S3 — C32⋊C4 — C3×AΓL1(𝔽9) |
Generators and relations for C3×AΓL1(𝔽9)
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, ebe=b-1c, dcd-1=b, ce=ec, ede=d3 >
Character table of C3×AΓL1(𝔽9)
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | |
size | 1 | 9 | 12 | 1 | 1 | 8 | 8 | 8 | 18 | 36 | 9 | 9 | 12 | 12 | 24 | 24 | 24 | 18 | 18 | 18 | 18 | 36 | 36 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ6 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ8 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | -1 | ζ6 | ζ65 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ9 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | -1 | ζ65 | ζ6 | -1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 6 |
ρ10 | 1 | 1 | -1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | -1 | ζ6 | ζ65 | -1 | -1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ11 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | 1 | -1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | -1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | -1 | ζ65 | ζ6 | 1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ13 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 0 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | -2 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ15 | 2 | 2 | 0 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | -2 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3×D4 |
ρ16 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ17 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ18 | 2 | -2 | 0 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | ζ87ζ3+ζ85ζ3 | ζ83ζ32+ζ8ζ32 | ζ87ζ32+ζ85ζ32 | ζ83ζ3+ζ8ζ3 | complex lifted from C3×SD16 |
ρ19 | 2 | -2 | 0 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | ζ83ζ32+ζ8ζ32 | ζ87ζ3+ζ85ζ3 | ζ83ζ3+ζ8ζ3 | ζ87ζ32+ζ85ζ32 | complex lifted from C3×SD16 |
ρ20 | 2 | -2 | 0 | -1+√-3 | -1-√-3 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | ζ83ζ3+ζ8ζ3 | ζ87ζ32+ζ85ζ32 | ζ83ζ32+ζ8ζ32 | ζ87ζ3+ζ85ζ3 | complex lifted from C3×SD16 |
ρ21 | 2 | -2 | 0 | -1-√-3 | -1+√-3 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | ζ87ζ32+ζ85ζ32 | ζ83ζ3+ζ8ζ3 | ζ87ζ3+ζ85ζ3 | ζ83ζ32+ζ8ζ32 | complex lifted from C3×SD16 |
ρ22 | 8 | 0 | -2 | 8 | 8 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ23 | 8 | 0 | 2 | 8 | 8 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from AΓL1(𝔽9) |
ρ24 | 8 | 0 | -2 | -4+4√-3 | -4-4√-3 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 1 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 8 | 0 | -2 | -4-4√-3 | -4+4√-3 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 1 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ26 | 8 | 0 | 2 | -4+4√-3 | -4-4√-3 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 8 | 0 | 2 | -4-4√-3 | -4+4√-3 | -1 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | -1 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 9 21)(2 10 22)(3 11 23)(4 12 24)(5 13 17)(6 14 18)(7 15 19)(8 16 20)
(1 9 21)(3 11 23)(4 12 24)(5 17 13)(7 19 15)(8 20 16)
(1 21 9)(2 10 22)(4 12 24)(5 13 17)(6 18 14)(8 20 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(18 20)(19 23)(22 24)
G:=sub<Sym(24)| (1,9,21)(2,10,22)(3,11,23)(4,12,24)(5,13,17)(6,14,18)(7,15,19)(8,16,20), (1,9,21)(3,11,23)(4,12,24)(5,17,13)(7,19,15)(8,20,16), (1,21,9)(2,10,22)(4,12,24)(5,13,17)(6,18,14)(8,20,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)>;
G:=Group( (1,9,21)(2,10,22)(3,11,23)(4,12,24)(5,13,17)(6,14,18)(7,15,19)(8,16,20), (1,9,21)(3,11,23)(4,12,24)(5,17,13)(7,19,15)(8,20,16), (1,21,9)(2,10,22)(4,12,24)(5,13,17)(6,18,14)(8,20,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24) );
G=PermutationGroup([[(1,9,21),(2,10,22),(3,11,23),(4,12,24),(5,13,17),(6,14,18),(7,15,19),(8,16,20)], [(1,9,21),(3,11,23),(4,12,24),(5,17,13),(7,19,15),(8,20,16)], [(1,21,9),(2,10,22),(4,12,24),(5,13,17),(6,18,14),(8,20,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(18,20),(19,23),(22,24)]])
G:=TransitiveGroup(24,1330);
(1 2 3)(4 20 19)(5 21 12)(6 22 13)(7 23 14)(8 24 15)(9 25 16)(10 26 17)(11 27 18)
(1 13 17)(2 6 10)(3 22 26)(4 7 5)(8 9 11)(12 19 14)(15 16 18)(20 23 21)(24 25 27)
(1 14 18)(2 7 11)(3 23 27)(4 9 10)(5 8 6)(12 15 13)(16 17 19)(20 25 26)(21 24 22)
(4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27)
(4 6)(5 9)(8 10)(12 16)(13 19)(15 17)(20 22)(21 25)(24 26)
G:=sub<Sym(27)| (1,2,3)(4,20,19)(5,21,12)(6,22,13)(7,23,14)(8,24,15)(9,25,16)(10,26,17)(11,27,18), (1,13,17)(2,6,10)(3,22,26)(4,7,5)(8,9,11)(12,19,14)(15,16,18)(20,23,21)(24,25,27), (1,14,18)(2,7,11)(3,23,27)(4,9,10)(5,8,6)(12,15,13)(16,17,19)(20,25,26)(21,24,22), (4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27), (4,6)(5,9)(8,10)(12,16)(13,19)(15,17)(20,22)(21,25)(24,26)>;
G:=Group( (1,2,3)(4,20,19)(5,21,12)(6,22,13)(7,23,14)(8,24,15)(9,25,16)(10,26,17)(11,27,18), (1,13,17)(2,6,10)(3,22,26)(4,7,5)(8,9,11)(12,19,14)(15,16,18)(20,23,21)(24,25,27), (1,14,18)(2,7,11)(3,23,27)(4,9,10)(5,8,6)(12,15,13)(16,17,19)(20,25,26)(21,24,22), (4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27), (4,6)(5,9)(8,10)(12,16)(13,19)(15,17)(20,22)(21,25)(24,26) );
G=PermutationGroup([[(1,2,3),(4,20,19),(5,21,12),(6,22,13),(7,23,14),(8,24,15),(9,25,16),(10,26,17),(11,27,18)], [(1,13,17),(2,6,10),(3,22,26),(4,7,5),(8,9,11),(12,19,14),(15,16,18),(20,23,21),(24,25,27)], [(1,14,18),(2,7,11),(3,23,27),(4,9,10),(5,8,6),(12,15,13),(16,17,19),(20,25,26),(21,24,22)], [(4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27)], [(4,6),(5,9),(8,10),(12,16),(13,19),(15,17),(20,22),(21,25),(24,26)]])
G:=TransitiveGroup(27,142);
Matrix representation of C3×AΓL1(𝔽9) ►in GL8(𝔽73)
64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 64 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 64 |
64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 64 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 64 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(8,GF(73))| [64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64],[64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64],[0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;
C3×AΓL1(𝔽9) in GAP, Magma, Sage, TeX
C_3\times {\rm AGammaL}_1({\mathbb F}_9)
% in TeX
G:=Group("C3xAGammaL(1,9)");
// GroupNames label
G:=SmallGroup(432,737);
// by ID
G=gap.SmallGroup(432,737);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,3,84,533,514,80,6053,7068,1202,201,16470,7069,1595,622]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,e*b*e=b^-1*c,d*c*d^-1=b,c*e=e*c,e*d*e=d^3>;
// generators/relations
Export
Subgroup lattice of C3×AΓL1(𝔽9) in TeX
Character table of C3×AΓL1(𝔽9) in TeX