Copied to
clipboard

G = C3xAΓL1(F9)  order 432 = 24·33

Direct product of C3 and AΓL1(F9)

direct product, non-abelian, soluble, monomial

Aliases: C3xAΓL1(F9), F9:C6, C33:1SD16, PSU3(F2):2C6, S3wrC2.C6, (C3xF9):3C2, C32:(C3xSD16), (C3xPSU3(F2)):3C2, C3:S3.(C3xD4), C32:C4.(C2xC6), (C3xC3:S3).1D4, (C3xS3wrC2).2C2, (C3xC32:C4).6C22, SmallGroup(432,737)

Series: Derived Chief Lower central Upper central

C1C32C32:C4 — C3xAΓL1(F9)
C1C32C3:S3C32:C4C3xC32:C4C3xF9 — C3xAΓL1(F9)
C32C3:S3C32:C4 — C3xAΓL1(F9)
C1C3

Generators and relations for C3xAΓL1(F9)
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, dbd-1=bc=cb, ebe=b-1c, dcd-1=b, ce=ec, ede=d3 >

Subgroups: 372 in 54 conjugacy classes, 16 normal (all characteristic)
Quotients: C1, C2, C3, C22, C6, D4, C2xC6, SD16, C3xD4, C3xSD16, AΓL1(F9), C3xAΓL1(F9)
9C2
12C2
4C3
8C3
9C4
18C4
18C22
4S3
9C6
12C6
12C6
12S3
24C6
4C32
8C32
9C8
9Q8
9D4
9C12
12D6
18C12
18C2xC6
4C3xS3
4C3xS3
8C3xS3
12C3xS3
12C3xC6
9SD16
9C3xQ8
9C3xD4
9C24
2C32:C4
2S32
12S3xC6
4S3xC32
9C3xSD16
2C3xS32
2C3xC32:C4

Character table of C3xAΓL1(F9)

 class 12A2B3A3B3C3D3E4A4B6A6B6C6D6E6F6G8A8B12A12B12C12D24A24B24C24D
 size 191211888183699121224242418181818363618181818
ρ1111111111111111111111111111    trivial
ρ211-1111111111-1-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ3111111111-11111111-1-111-1-1-1-1-1-1    linear of order 2
ρ411-1111111-111-1-1-1-1-11111-1-11111    linear of order 2
ρ5111ζ3ζ321ζ32ζ31-1ζ32ζ3ζ32ζ31ζ3ζ32-1-1ζ3ζ32ζ65ζ6ζ65ζ6ζ6ζ65    linear of order 6
ρ6111ζ3ζ321ζ32ζ311ζ32ζ3ζ32ζ31ζ3ζ3211ζ3ζ32ζ3ζ32ζ3ζ32ζ32ζ3    linear of order 3
ρ7111ζ32ζ31ζ3ζ3211ζ3ζ32ζ3ζ321ζ32ζ311ζ32ζ3ζ32ζ3ζ32ζ3ζ3ζ32    linear of order 3
ρ811-1ζ32ζ31ζ3ζ321-1ζ3ζ32ζ65ζ6-1ζ6ζ6511ζ32ζ3ζ6ζ65ζ32ζ3ζ3ζ32    linear of order 6
ρ911-1ζ3ζ321ζ32ζ311ζ32ζ3ζ6ζ65-1ζ65ζ6-1-1ζ3ζ32ζ3ζ32ζ65ζ6ζ6ζ65    linear of order 6
ρ1011-1ζ32ζ31ζ3ζ3211ζ3ζ32ζ65ζ6-1ζ6ζ65-1-1ζ32ζ3ζ32ζ3ζ6ζ65ζ65ζ6    linear of order 6
ρ11111ζ32ζ31ζ3ζ321-1ζ3ζ32ζ3ζ321ζ32ζ3-1-1ζ32ζ3ζ6ζ65ζ6ζ65ζ65ζ6    linear of order 6
ρ1211-1ζ3ζ321ζ32ζ31-1ζ32ζ3ζ6ζ65-1ζ65ζ611ζ3ζ32ζ65ζ6ζ3ζ32ζ32ζ3    linear of order 6
ρ1322022222-20220000000-2-2000000    orthogonal lifted from D4
ρ14220-1--3-1+-32-1+-3-1--3-20-1+-3-1--300000001+-31--3000000    complex lifted from C3xD4
ρ15220-1+-3-1--32-1--3-1+-3-20-1--3-1+-300000001--31+-3000000    complex lifted from C3xD4
ρ162-202222200-2-200000--2-20000-2--2-2--2    complex lifted from SD16
ρ172-202222200-2-200000-2--20000--2-2--2-2    complex lifted from SD16
ρ182-20-1+-3-1--32-1--3-1+-3001+-31--300000-2--20000ζ87ζ385ζ3ζ83ζ328ζ32ζ87ζ3285ζ32ζ83ζ38ζ3    complex lifted from C3xSD16
ρ192-20-1--3-1+-32-1+-3-1--3001--31+-300000--2-20000ζ83ζ328ζ32ζ87ζ385ζ3ζ83ζ38ζ3ζ87ζ3285ζ32    complex lifted from C3xSD16
ρ202-20-1+-3-1--32-1--3-1+-3001+-31--300000--2-20000ζ83ζ38ζ3ζ87ζ3285ζ32ζ83ζ328ζ32ζ87ζ385ζ3    complex lifted from C3xSD16
ρ212-20-1--3-1+-32-1+-3-1--3001--31+-300000-2--20000ζ87ζ3285ζ32ζ83ζ38ζ3ζ87ζ385ζ3ζ83ζ328ζ32    complex lifted from C3xSD16
ρ2280-288-1-1-10000-2-21110000000000    orthogonal lifted from AΓL1(F9)
ρ2380288-1-1-1000022-1-1-10000000000    orthogonal lifted from AΓL1(F9)
ρ2480-2-4+4-3-4-4-3-1ζ6ζ6500001+-31--31ζ3ζ320000000000    complex faithful
ρ2580-2-4-4-3-4+4-3-1ζ65ζ600001--31+-31ζ32ζ30000000000    complex faithful
ρ26802-4+4-3-4-4-3-1ζ6ζ650000-1--3-1+-3-1ζ65ζ60000000000    complex faithful
ρ27802-4-4-3-4+4-3-1ζ65ζ60000-1+-3-1--3-1ζ6ζ650000000000    complex faithful

Permutation representations of C3xAΓL1(F9)
On 24 points - transitive group 24T1330
Generators in S24
(1 9 21)(2 10 22)(3 11 23)(4 12 24)(5 13 17)(6 14 18)(7 15 19)(8 16 20)
(1 9 21)(3 11 23)(4 12 24)(5 17 13)(7 19 15)(8 20 16)
(1 21 9)(2 10 22)(4 12 24)(5 13 17)(6 18 14)(8 20 16)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(18 20)(19 23)(22 24)

G:=sub<Sym(24)| (1,9,21)(2,10,22)(3,11,23)(4,12,24)(5,13,17)(6,14,18)(7,15,19)(8,16,20), (1,9,21)(3,11,23)(4,12,24)(5,17,13)(7,19,15)(8,20,16), (1,21,9)(2,10,22)(4,12,24)(5,13,17)(6,18,14)(8,20,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24)>;

G:=Group( (1,9,21)(2,10,22)(3,11,23)(4,12,24)(5,13,17)(6,14,18)(7,15,19)(8,16,20), (1,9,21)(3,11,23)(4,12,24)(5,17,13)(7,19,15)(8,20,16), (1,21,9)(2,10,22)(4,12,24)(5,13,17)(6,18,14)(8,20,16), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(18,20)(19,23)(22,24) );

G=PermutationGroup([[(1,9,21),(2,10,22),(3,11,23),(4,12,24),(5,13,17),(6,14,18),(7,15,19),(8,16,20)], [(1,9,21),(3,11,23),(4,12,24),(5,17,13),(7,19,15),(8,20,16)], [(1,21,9),(2,10,22),(4,12,24),(5,13,17),(6,18,14),(8,20,16)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(18,20),(19,23),(22,24)]])

G:=TransitiveGroup(24,1330);

On 27 points - transitive group 27T142
Generators in S27
(1 2 3)(4 20 19)(5 21 12)(6 22 13)(7 23 14)(8 24 15)(9 25 16)(10 26 17)(11 27 18)
(1 13 17)(2 6 10)(3 22 26)(4 7 5)(8 9 11)(12 19 14)(15 16 18)(20 23 21)(24 25 27)
(1 14 18)(2 7 11)(3 23 27)(4 9 10)(5 8 6)(12 15 13)(16 17 19)(20 25 26)(21 24 22)
(4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27)
(4 6)(5 9)(8 10)(12 16)(13 19)(15 17)(20 22)(21 25)(24 26)

G:=sub<Sym(27)| (1,2,3)(4,20,19)(5,21,12)(6,22,13)(7,23,14)(8,24,15)(9,25,16)(10,26,17)(11,27,18), (1,13,17)(2,6,10)(3,22,26)(4,7,5)(8,9,11)(12,19,14)(15,16,18)(20,23,21)(24,25,27), (1,14,18)(2,7,11)(3,23,27)(4,9,10)(5,8,6)(12,15,13)(16,17,19)(20,25,26)(21,24,22), (4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27), (4,6)(5,9)(8,10)(12,16)(13,19)(15,17)(20,22)(21,25)(24,26)>;

G:=Group( (1,2,3)(4,20,19)(5,21,12)(6,22,13)(7,23,14)(8,24,15)(9,25,16)(10,26,17)(11,27,18), (1,13,17)(2,6,10)(3,22,26)(4,7,5)(8,9,11)(12,19,14)(15,16,18)(20,23,21)(24,25,27), (1,14,18)(2,7,11)(3,23,27)(4,9,10)(5,8,6)(12,15,13)(16,17,19)(20,25,26)(21,24,22), (4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27), (4,6)(5,9)(8,10)(12,16)(13,19)(15,17)(20,22)(21,25)(24,26) );

G=PermutationGroup([[(1,2,3),(4,20,19),(5,21,12),(6,22,13),(7,23,14),(8,24,15),(9,25,16),(10,26,17),(11,27,18)], [(1,13,17),(2,6,10),(3,22,26),(4,7,5),(8,9,11),(12,19,14),(15,16,18),(20,23,21),(24,25,27)], [(1,14,18),(2,7,11),(3,23,27),(4,9,10),(5,8,6),(12,15,13),(16,17,19),(20,25,26),(21,24,22)], [(4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27)], [(4,6),(5,9),(8,10),(12,16),(13,19),(15,17),(20,22),(21,25),(24,26)]])

G:=TransitiveGroup(27,142);

Matrix representation of C3xAΓL1(F9) in GL8(F73)

640000000
064000000
006400000
000640000
000064000
000006400
000000640
000000064
,
640000000
08000000
00800000
000640000
00008000
000006400
00000010
00000001
,
80000000
064000000
00100000
00010000
00008000
000006400
00000080
000000064
,
00001000
00000100
00000010
00000001
00100000
00010000
01000000
10000000
,
10000000
01000000
00010000
00100000
00000010
00000001
00001000
00000100

G:=sub<GL(8,GF(73))| [64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,64],[64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,64],[0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C3xAΓL1(F9) in GAP, Magma, Sage, TeX

C_3\times {\rm AGammaL}_1({\mathbb F}_9)
% in TeX

G:=Group("C3xAGammaL(1,9)");
// GroupNames label

G:=SmallGroup(432,737);
// by ID

G=gap.SmallGroup(432,737);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,3,84,533,514,80,6053,7068,1202,201,16470,7069,1595,622]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,d*b*d^-1=b*c=c*b,e*b*e=b^-1*c,d*c*d^-1=b,c*e=e*c,e*d*e=d^3>;
// generators/relations

Export

Subgroup lattice of C3xAΓL1(F9) in TeX
Character table of C3xAΓL1(F9) in TeX

׿
x
:
Z
F
o
wr
Q
<