Extensions 1→N→G→Q→1 with N=C3xC9 and Q=C4oD4

Direct product G=NxQ with N=C3xC9 and Q=C4oD4
dρLabelID
C4oD4xC3xC9216C4oD4xC3xC9432,409

Semidirect products G=N:Q with N=C3xC9 and Q=C4oD4
extensionφ:Q→Aut NdρLabelID
(C3xC9):1(C4oD4) = D18.D6φ: C4oD4/C4C22 ⊆ Aut C3xC9724(C3xC9):1(C4oD4)432,281
(C3xC9):2(C4oD4) = Dic6:5D9φ: C4oD4/C4C22 ⊆ Aut C3xC9724+(C3xC9):2(C4oD4)432,282
(C3xC9):3(C4oD4) = D12:5D9φ: C4oD4/C4C22 ⊆ Aut C3xC91444-(C3xC9):3(C4oD4)432,285
(C3xC9):4(C4oD4) = D12:D9φ: C4oD4/C4C22 ⊆ Aut C3xC9724(C3xC9):4(C4oD4)432,286
(C3xC9):5(C4oD4) = D6.D18φ: C4oD4/C4C22 ⊆ Aut C3xC9724(C3xC9):5(C4oD4)432,287
(C3xC9):6(C4oD4) = D36:5S3φ: C4oD4/C4C22 ⊆ Aut C3xC91444-(C3xC9):6(C4oD4)432,288
(C3xC9):7(C4oD4) = Dic9.D6φ: C4oD4/C4C22 ⊆ Aut C3xC9724+(C3xC9):7(C4oD4)432,289
(C3xC9):8(C4oD4) = D18.3D6φ: C4oD4/C22C22 ⊆ Aut C3xC9724(C3xC9):8(C4oD4)432,305
(C3xC9):9(C4oD4) = Dic3.D18φ: C4oD4/C22C22 ⊆ Aut C3xC9724(C3xC9):9(C4oD4)432,309
(C3xC9):10(C4oD4) = D18.4D6φ: C4oD4/C22C22 ⊆ Aut C3xC9724-(C3xC9):10(C4oD4)432,310
(C3xC9):11(C4oD4) = C9xC4oD12φ: C4oD4/C2xC4C2 ⊆ Aut C3xC9722(C3xC9):11(C4oD4)432,347
(C3xC9):12(C4oD4) = C3xD36:5C2φ: C4oD4/C2xC4C2 ⊆ Aut C3xC9722(C3xC9):12(C4oD4)432,344
(C3xC9):13(C4oD4) = C36.70D6φ: C4oD4/C2xC4C2 ⊆ Aut C3xC9216(C3xC9):13(C4oD4)432,383
(C3xC9):14(C4oD4) = C9xD4:2S3φ: C4oD4/D4C2 ⊆ Aut C3xC9724(C3xC9):14(C4oD4)432,359
(C3xC9):15(C4oD4) = C3xD4:2D9φ: C4oD4/D4C2 ⊆ Aut C3xC9724(C3xC9):15(C4oD4)432,357
(C3xC9):16(C4oD4) = C36.27D6φ: C4oD4/D4C2 ⊆ Aut C3xC9216(C3xC9):16(C4oD4)432,389
(C3xC9):17(C4oD4) = C9xQ8:3S3φ: C4oD4/Q8C2 ⊆ Aut C3xC91444(C3xC9):17(C4oD4)432,367
(C3xC9):18(C4oD4) = C3xQ8:3D9φ: C4oD4/Q8C2 ⊆ Aut C3xC91444(C3xC9):18(C4oD4)432,365
(C3xC9):19(C4oD4) = C36.29D6φ: C4oD4/Q8C2 ⊆ Aut C3xC9216(C3xC9):19(C4oD4)432,393


׿
x
:
Z
F
o
wr
Q
<