Copied to
clipboard

G = D6.D18order 432 = 24·33

1st non-split extension by D6 of D18 acting via D18/C18=C2

metabelian, supersoluble, monomial

Aliases: D6.5D18, D18.7D6, C36.43D6, C12.43D18, Dic9.8D6, Dic3.8D18, C12.65S32, (C4xS3):4D9, (C4xD9):4S3, (S3xC36):2C2, (C12xD9):7C2, C4.28(S3xD9), C9:D12:7C2, D6:D9:7C2, C9:2(C4oD12), C3:D36:7C2, (S3xC12).2S3, (S3xC6).26D6, C6.8(C22xD9), C9:Dic6:7C2, (C3xC12).161D6, C18.8(C22xS3), (C3xC18).8C23, C3:2(D36:5C2), (C6xD9).8C22, (S3xC18).9C22, (C3xC36).42C22, (C3xDic3).29D6, C3.1(D6.D6), C32.2(C4oD12), C9:Dic3.10C22, (C9xDic3).8C22, (C3xDic9).10C22, (C4xC9:S3):7C2, C6.27(C2xS32), C2.12(C2xS3xD9), (C3xC9):5(C4oD4), (C2xC9:S3).8C22, (C3xC6).76(C22xS3), SmallGroup(432,287)

Series: Derived Chief Lower central Upper central

C1C3xC18 — D6.D18
C1C3C32C3xC9C3xC18S3xC18D6:D9 — D6.D18
C3xC9C3xC18 — D6.D18
C1C4

Generators and relations for D6.D18
 G = < a,b,c,d | a18=b2=1, c6=d2=a9, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a9b, dcd-1=c5 >

Subgroups: 860 in 136 conjugacy classes, 41 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, C9, C9, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C4oD4, D9, C18, C18, C3xS3, C3:S3, C3xC6, Dic6, C4xS3, C4xS3, D12, C3:D4, C2xC12, C3xC9, Dic9, Dic9, C36, C36, D18, D18, C2xC18, C3xDic3, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C4oD12, C3xD9, S3xC9, C9:S3, C3xC18, Dic18, C4xD9, C4xD9, D36, C9:D4, C2xC36, D6:S3, C3:D12, C32:2Q8, S3xC12, S3xC12, C4xC3:S3, C3xDic9, C9xDic3, C9:Dic3, C3xC36, C6xD9, S3xC18, C2xC9:S3, D36:5C2, D6.D6, C9:Dic6, C3:D36, D6:D9, C9:D12, C12xD9, S3xC36, C4xC9:S3, D6.D18
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, D9, C22xS3, D18, S32, C4oD12, C22xD9, C2xS32, S3xD9, D36:5C2, D6.D6, C2xS3xD9, D6.D18

Smallest permutation representation of D6.D18
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 44)(2 43)(3 42)(4 41)(5 40)(6 39)(7 38)(8 37)(9 54)(10 53)(11 52)(12 51)(13 50)(14 49)(15 48)(16 47)(17 46)(18 45)(19 63)(20 62)(21 61)(22 60)(23 59)(24 58)(25 57)(26 56)(27 55)(28 72)(29 71)(30 70)(31 69)(32 68)(33 67)(34 66)(35 65)(36 64)
(1 32 16 29 13 26 10 23 7 20 4 35)(2 33 17 30 14 27 11 24 8 21 5 36)(3 34 18 31 15 28 12 25 9 22 6 19)(37 61 40 64 43 67 46 70 49 55 52 58)(38 62 41 65 44 68 47 71 50 56 53 59)(39 63 42 66 45 69 48 72 51 57 54 60)
(1 39 10 48)(2 40 11 49)(3 41 12 50)(4 42 13 51)(5 43 14 52)(6 44 15 53)(7 45 16 54)(8 46 17 37)(9 47 18 38)(19 56 28 65)(20 57 29 66)(21 58 30 67)(22 59 31 68)(23 60 32 69)(24 61 33 70)(25 62 34 71)(26 63 35 72)(27 64 36 55)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64), (1,32,16,29,13,26,10,23,7,20,4,35)(2,33,17,30,14,27,11,24,8,21,5,36)(3,34,18,31,15,28,12,25,9,22,6,19)(37,61,40,64,43,67,46,70,49,55,52,58)(38,62,41,65,44,68,47,71,50,56,53,59)(39,63,42,66,45,69,48,72,51,57,54,60), (1,39,10,48)(2,40,11,49)(3,41,12,50)(4,42,13,51)(5,43,14,52)(6,44,15,53)(7,45,16,54)(8,46,17,37)(9,47,18,38)(19,56,28,65)(20,57,29,66)(21,58,30,67)(22,59,31,68)(23,60,32,69)(24,61,33,70)(25,62,34,71)(26,63,35,72)(27,64,36,55)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,54)(10,53)(11,52)(12,51)(13,50)(14,49)(15,48)(16,47)(17,46)(18,45)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64), (1,32,16,29,13,26,10,23,7,20,4,35)(2,33,17,30,14,27,11,24,8,21,5,36)(3,34,18,31,15,28,12,25,9,22,6,19)(37,61,40,64,43,67,46,70,49,55,52,58)(38,62,41,65,44,68,47,71,50,56,53,59)(39,63,42,66,45,69,48,72,51,57,54,60), (1,39,10,48)(2,40,11,49)(3,41,12,50)(4,42,13,51)(5,43,14,52)(6,44,15,53)(7,45,16,54)(8,46,17,37)(9,47,18,38)(19,56,28,65)(20,57,29,66)(21,58,30,67)(22,59,31,68)(23,60,32,69)(24,61,33,70)(25,62,34,71)(26,63,35,72)(27,64,36,55) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,44),(2,43),(3,42),(4,41),(5,40),(6,39),(7,38),(8,37),(9,54),(10,53),(11,52),(12,51),(13,50),(14,49),(15,48),(16,47),(17,46),(18,45),(19,63),(20,62),(21,61),(22,60),(23,59),(24,58),(25,57),(26,56),(27,55),(28,72),(29,71),(30,70),(31,69),(32,68),(33,67),(34,66),(35,65),(36,64)], [(1,32,16,29,13,26,10,23,7,20,4,35),(2,33,17,30,14,27,11,24,8,21,5,36),(3,34,18,31,15,28,12,25,9,22,6,19),(37,61,40,64,43,67,46,70,49,55,52,58),(38,62,41,65,44,68,47,71,50,56,53,59),(39,63,42,66,45,69,48,72,51,57,54,60)], [(1,39,10,48),(2,40,11,49),(3,41,12,50),(4,42,13,51),(5,43,14,52),(6,44,15,53),(7,45,16,54),(8,46,17,37),(9,47,18,38),(19,56,28,65),(20,57,29,66),(21,58,30,67),(22,59,31,68),(23,60,32,69),(24,61,33,70),(25,62,34,71),(26,63,35,72),(27,64,36,55)]])

66 conjugacy classes

class 1 2A2B2C2D3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G9A9B9C9D9E9F12A12B12C12D12E12F12G12H12I12J18A18B18C18D18E18F18G···18L36A···36F36G···36L36M···36R
order122223334444466666669999991212121212121212121218181818181818···1836···3636···3636···36
size116185422411618542246618182224442222446618182224446···62···24···46···6

66 irreducible representations

dim111111112222222222222222444444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3S3D6D6D6D6D6D6C4oD4D9D18D18D18C4oD12C4oD12D36:5C2S32C2xS32S3xD9D6.D6C2xS3xD9D6.D18
kernelD6.D18C9:Dic6C3:D36D6:D9C9:D12C12xD9S3xC36C4xC9:S3C4xD9S3xC12Dic9C36D18C3xDic3C3xC12S3xC6C3xC9C4xS3Dic3C12D6C9C32C3C12C6C4C3C2C1
# reps1111111111111111233334412113236

Matrix representation of D6.D18 in GL6(F37)

3600000
0360000
001000
000100
00001711
0000266
,
2020000
4170000
0036000
0003600
00002026
0000617
,
600000
060000
0003600
001100
0000360
0000036
,
2020000
3170000
0003600
0036000
000010
000001

G:=sub<GL(6,GF(37))| [36,0,0,0,0,0,0,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,17,26,0,0,0,0,11,6],[20,4,0,0,0,0,2,17,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,20,6,0,0,0,0,26,17],[6,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,36,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[20,3,0,0,0,0,2,17,0,0,0,0,0,0,0,36,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

D6.D18 in GAP, Magma, Sage, TeX

D_6.D_{18}
% in TeX

G:=Group("D6.D18");
// GroupNames label

G:=SmallGroup(432,287);
// by ID

G=gap.SmallGroup(432,287);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^18=b^2=1,c^6=d^2=a^9,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^9*b,d*c*d^-1=c^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<