Extensions 1→N→G→Q→1 with N=C3×A4 and Q=C2×C6

Direct product G=N×Q with N=C3×A4 and Q=C2×C6
dρLabelID
A4×C62108A4xC6^2432,770

Semidirect products G=N:Q with N=C3×A4 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊(C2×C6) = C2×C62⋊S3φ: C2×C6/C2C6 ⊆ Out C3×A4186+(C3xA4):(C2xC6)432,535
(C3×A4)⋊2(C2×C6) = C3×S3×S4φ: C2×C6/C3C22 ⊆ Out C3×A4246(C3xA4):2(C2xC6)432,745
(C3×A4)⋊3(C2×C6) = C22×C32⋊A4φ: C2×C6/C22C3 ⊆ Out C3×A436(C3xA4):3(C2xC6)432,550
(C3×A4)⋊4(C2×C6) = C3×C6×S4φ: C2×C6/C6C2 ⊆ Out C3×A454(C3xA4):4(C2xC6)432,760
(C3×A4)⋊5(C2×C6) = C6×C3⋊S4φ: C2×C6/C6C2 ⊆ Out C3×A4366(C3xA4):5(C2xC6)432,761
(C3×A4)⋊6(C2×C6) = S3×C6×A4φ: C2×C6/C6C2 ⊆ Out C3×A4366(C3xA4):6(C2xC6)432,763

Non-split extensions G=N.Q with N=C3×A4 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C3×A4).(C2×C6) = C22×C9⋊A4φ: C2×C6/C22C3 ⊆ Out C3×A4108(C3xA4).(C2xC6)432,547
(C3×A4).2(C2×C6) = C18×S4φ: C2×C6/C6C2 ⊆ Out C3×A4543(C3xA4).2(C2xC6)432,532
(C3×A4).3(C2×C6) = A4×C2×C18φ: trivial image108(C3xA4).3(C2xC6)432,546

׿
×
𝔽