Copied to
clipboard

G = C3xS3xS4order 432 = 24·33

Direct product of C3, S3 and S4

direct product, non-abelian, soluble, monomial

Aliases: C3xS3xS4, C62:7D6, (C3xS4):C6, (S3xA4):C6, C3:S4:2C6, C3:1(C6xS4), A4:1(S3xC6), (C3xA4):7D6, C32:6(C2xS4), (C32xS4):1C2, (C32xA4):1C22, (C2xC6):3S32, (C2xC6):(S3xC6), C22:(C3xS32), (C3xS3xA4):1C2, (S3xC2xC6):1S3, (C3xC3:S4):3C2, (C3xA4):2(C2xC6), (C22xS3):(C3xS3), SmallGroup(432,745)

Series: Derived Chief Lower central Upper central

C1C22C3xA4 — C3xS3xS4
C1C22C2xC6C3xA4C32xA4C3xS3xA4 — C3xS3xS4
C3xA4 — C3xS3xS4
C1C3

Generators and relations for C3xS3xS4
 G = < a,b,c,d,e,f,g | a3=b3=c2=d2=e2=f3=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, cbc=b-1, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fdf-1=gdg=de=ed, fef-1=d, eg=ge, gfg=f-1 >

Subgroups: 904 in 163 conjugacy classes, 26 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, S3, C6, C2xC4, D4, C23, C32, C32, Dic3, C12, A4, A4, D6, C2xC6, C2xC6, C2xD4, C3xS3, C3xS3, C3:S3, C3xC6, C4xS3, D12, C3:D4, C2xC12, C3xD4, S4, S4, C2xA4, C22xS3, C22xS3, C22xC6, C33, C3xDic3, C3xC12, S32, C3xA4, C3xA4, S3xC6, C62, C62, S3xD4, C6xD4, C2xS4, S3xC32, C3xC3:S3, S3xC12, C3xD12, C3xC3:D4, D4xC32, C3xS4, C3xS4, C3:S4, S3xA4, S3xA4, C6xA4, S3xC2xC6, S3xC2xC6, C3xS32, C32xA4, C3xS3xD4, S3xS4, C6xS4, C32xS4, C3xC3:S4, C3xS3xA4, C3xS3xS4
Quotients: C1, C2, C3, C22, S3, C6, D6, C2xC6, C3xS3, S4, S32, S3xC6, C2xS4, C3xS4, C3xS32, S3xS4, C6xS4, C3xS3xS4

Permutation representations of C3xS3xS4
On 24 points - transitive group 24T1328
Generators in S24
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 2 3)(4 6 5)(7 9 8)(10 11 12)(13 14 15)(16 18 17)(19 20 21)(22 24 23)
(1 7)(2 8)(3 9)(4 19)(5 20)(6 21)(10 22)(11 23)(12 24)(13 18)(14 16)(15 17)
(1 14)(2 15)(3 13)(4 24)(5 22)(6 23)(7 16)(8 17)(9 18)(10 20)(11 21)(12 19)
(1 21)(2 19)(3 20)(4 8)(5 9)(6 7)(10 13)(11 14)(12 15)(16 23)(17 24)(18 22)
(4 24 17)(5 22 18)(6 23 16)(10 13 20)(11 14 21)(12 15 19)
(10 13)(11 14)(12 15)(16 23)(17 24)(18 22)

G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,2,3)(4,6,5)(7,9,8)(10,11,12)(13,14,15)(16,18,17)(19,20,21)(22,24,23), (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17), (1,14)(2,15)(3,13)(4,24)(5,22)(6,23)(7,16)(8,17)(9,18)(10,20)(11,21)(12,19), (1,21)(2,19)(3,20)(4,8)(5,9)(6,7)(10,13)(11,14)(12,15)(16,23)(17,24)(18,22), (4,24,17)(5,22,18)(6,23,16)(10,13,20)(11,14,21)(12,15,19), (10,13)(11,14)(12,15)(16,23)(17,24)(18,22)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,2,3)(4,6,5)(7,9,8)(10,11,12)(13,14,15)(16,18,17)(19,20,21)(22,24,23), (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17), (1,14)(2,15)(3,13)(4,24)(5,22)(6,23)(7,16)(8,17)(9,18)(10,20)(11,21)(12,19), (1,21)(2,19)(3,20)(4,8)(5,9)(6,7)(10,13)(11,14)(12,15)(16,23)(17,24)(18,22), (4,24,17)(5,22,18)(6,23,16)(10,13,20)(11,14,21)(12,15,19), (10,13)(11,14)(12,15)(16,23)(17,24)(18,22) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,2,3),(4,6,5),(7,9,8),(10,11,12),(13,14,15),(16,18,17),(19,20,21),(22,24,23)], [(1,7),(2,8),(3,9),(4,19),(5,20),(6,21),(10,22),(11,23),(12,24),(13,18),(14,16),(15,17)], [(1,14),(2,15),(3,13),(4,24),(5,22),(6,23),(7,16),(8,17),(9,18),(10,20),(11,21),(12,19)], [(1,21),(2,19),(3,20),(4,8),(5,9),(6,7),(10,13),(11,14),(12,15),(16,23),(17,24),(18,22)], [(4,24,17),(5,22,18),(6,23,16),(10,13,20),(11,14,21),(12,15,19)], [(10,13),(11,14),(12,15),(16,23),(17,24),(18,22)]])

G:=TransitiveGroup(24,1328);

45 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E3F3G3H3I3J3K4A4B6A6B6C6D6E···6I6J6K6L6M6N6O6P6Q6R6S12A12B12C12D12E12F12G
order122222333333333334466666···6666666666612121212121212
size13369181122288816161661833336···6991212121818242424661212121818

45 irreducible representations

dim111111112222222233334466
type++++++++++++
imageC1C2C2C2C3C6C6C6S3S3D6D6C3xS3C3xS3S3xC6S3xC6S4C2xS4C3xS4C6xS4S32C3xS32S3xS4C3xS3xS4
kernelC3xS3xS4C32xS4C3xC3:S4C3xS3xA4S3xS4C3xS4C3:S4S3xA4C3xS4S3xC2xC6C3xA4C62S4C22xS3A4C2xC6C3xS3C32S3C3C2xC6C22C3C1
# reps111122221111222222441224

Matrix representation of C3xS3xS4 in GL7(F13)

1000000
0100000
0030000
0003000
0000100
0000010
0000001
,
9000000
3300000
0010000
0001000
0000100
0000010
0000001
,
12200000
0100000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
0000001
0000121212
0000100
,
1000000
0100000
0010000
0001000
0000121212
0000001
0000010
,
1000000
0100000
00012000
00112000
0000100
0000121212
0000010
,
12000000
01200000
00120000
00121000
0000100
0000001
0000010

G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[9,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0,0,0,0,0,1,12,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,1,0,0,0,0,12,1,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0] >;

C3xS3xS4 in GAP, Magma, Sage, TeX

C_3\times S_3\times S_4
% in TeX

G:=Group("C3xS3xS4");
// GroupNames label

G:=SmallGroup(432,745);
// by ID

G=gap.SmallGroup(432,745);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,346,2524,4548,782,2659,1350]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^3=b^3=c^2=d^2=e^2=f^3=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=g*d*g=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g=f^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<