direct product, non-abelian, soluble, monomial
Aliases: C3×S3×S4, C62⋊7D6, (C3×S4)⋊C6, (S3×A4)⋊C6, C3⋊S4⋊2C6, C3⋊1(C6×S4), A4⋊1(S3×C6), (C3×A4)⋊7D6, C32⋊6(C2×S4), (C32×S4)⋊1C2, (C32×A4)⋊1C22, (C2×C6)⋊3S32, (C2×C6)⋊(S3×C6), C22⋊(C3×S32), (C3×S3×A4)⋊1C2, (S3×C2×C6)⋊1S3, (C3×C3⋊S4)⋊3C2, (C3×A4)⋊2(C2×C6), (C22×S3)⋊(C3×S3), SmallGroup(432,745)
Series: Derived ►Chief ►Lower central ►Upper central
C3×A4 — C3×S3×S4 |
Generators and relations for C3×S3×S4
G = < a,b,c,d,e,f,g | a3=b3=c2=d2=e2=f3=g2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, cbc=b-1, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fdf-1=gdg=de=ed, fef-1=d, eg=ge, gfg=f-1 >
Subgroups: 904 in 163 conjugacy classes, 26 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, S3, C6, C2×C4, D4, C23, C32, C32, Dic3, C12, A4, A4, D6, C2×C6, C2×C6, C2×D4, C3×S3, C3×S3, C3⋊S3, C3×C6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, S4, S4, C2×A4, C22×S3, C22×S3, C22×C6, C33, C3×Dic3, C3×C12, S32, C3×A4, C3×A4, S3×C6, C62, C62, S3×D4, C6×D4, C2×S4, S3×C32, C3×C3⋊S3, S3×C12, C3×D12, C3×C3⋊D4, D4×C32, C3×S4, C3×S4, C3⋊S4, S3×A4, S3×A4, C6×A4, S3×C2×C6, S3×C2×C6, C3×S32, C32×A4, C3×S3×D4, S3×S4, C6×S4, C32×S4, C3×C3⋊S4, C3×S3×A4, C3×S3×S4
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, S4, S32, S3×C6, C2×S4, C3×S4, C3×S32, S3×S4, C6×S4, C3×S3×S4
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
(1 2 3)(4 6 5)(7 9 8)(10 11 12)(13 14 15)(16 18 17)(19 20 21)(22 24 23)
(1 7)(2 8)(3 9)(4 19)(5 20)(6 21)(10 22)(11 23)(12 24)(13 18)(14 16)(15 17)
(1 14)(2 15)(3 13)(4 24)(5 22)(6 23)(7 16)(8 17)(9 18)(10 20)(11 21)(12 19)
(1 21)(2 19)(3 20)(4 8)(5 9)(6 7)(10 13)(11 14)(12 15)(16 23)(17 24)(18 22)
(4 24 17)(5 22 18)(6 23 16)(10 13 20)(11 14 21)(12 15 19)
(10 13)(11 14)(12 15)(16 23)(17 24)(18 22)
G:=sub<Sym(24)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,2,3)(4,6,5)(7,9,8)(10,11,12)(13,14,15)(16,18,17)(19,20,21)(22,24,23), (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17), (1,14)(2,15)(3,13)(4,24)(5,22)(6,23)(7,16)(8,17)(9,18)(10,20)(11,21)(12,19), (1,21)(2,19)(3,20)(4,8)(5,9)(6,7)(10,13)(11,14)(12,15)(16,23)(17,24)(18,22), (4,24,17)(5,22,18)(6,23,16)(10,13,20)(11,14,21)(12,15,19), (10,13)(11,14)(12,15)(16,23)(17,24)(18,22)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24), (1,2,3)(4,6,5)(7,9,8)(10,11,12)(13,14,15)(16,18,17)(19,20,21)(22,24,23), (1,7)(2,8)(3,9)(4,19)(5,20)(6,21)(10,22)(11,23)(12,24)(13,18)(14,16)(15,17), (1,14)(2,15)(3,13)(4,24)(5,22)(6,23)(7,16)(8,17)(9,18)(10,20)(11,21)(12,19), (1,21)(2,19)(3,20)(4,8)(5,9)(6,7)(10,13)(11,14)(12,15)(16,23)(17,24)(18,22), (4,24,17)(5,22,18)(6,23,16)(10,13,20)(11,14,21)(12,15,19), (10,13)(11,14)(12,15)(16,23)(17,24)(18,22) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)], [(1,2,3),(4,6,5),(7,9,8),(10,11,12),(13,14,15),(16,18,17),(19,20,21),(22,24,23)], [(1,7),(2,8),(3,9),(4,19),(5,20),(6,21),(10,22),(11,23),(12,24),(13,18),(14,16),(15,17)], [(1,14),(2,15),(3,13),(4,24),(5,22),(6,23),(7,16),(8,17),(9,18),(10,20),(11,21),(12,19)], [(1,21),(2,19),(3,20),(4,8),(5,9),(6,7),(10,13),(11,14),(12,15),(16,23),(17,24),(18,22)], [(4,24,17),(5,22,18),(6,23,16),(10,13,20),(11,14,21),(12,15,19)], [(10,13),(11,14),(12,15),(16,23),(17,24),(18,22)]])
G:=TransitiveGroup(24,1328);
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 4A | 4B | 6A | 6B | 6C | 6D | 6E | ··· | 6I | 6J | 6K | 6L | 6M | 6N | 6O | 6P | 6Q | 6R | 6S | 12A | 12B | 12C | 12D | 12E | 12F | 12G |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 3 | 3 | 6 | 9 | 18 | 1 | 1 | 2 | 2 | 2 | 8 | 8 | 8 | 16 | 16 | 16 | 6 | 18 | 3 | 3 | 3 | 3 | 6 | ··· | 6 | 9 | 9 | 12 | 12 | 12 | 18 | 18 | 24 | 24 | 24 | 6 | 6 | 12 | 12 | 12 | 18 | 18 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | S3 | D6 | D6 | C3×S3 | C3×S3 | S3×C6 | S3×C6 | S4 | C2×S4 | C3×S4 | C6×S4 | S32 | C3×S32 | S3×S4 | C3×S3×S4 |
kernel | C3×S3×S4 | C32×S4 | C3×C3⋊S4 | C3×S3×A4 | S3×S4 | C3×S4 | C3⋊S4 | S3×A4 | C3×S4 | S3×C2×C6 | C3×A4 | C62 | S4 | C22×S3 | A4 | C2×C6 | C3×S3 | C32 | S3 | C3 | C2×C6 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 2 | 4 |
Matrix representation of C3×S3×S4 ►in GL7(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 12 | 12 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[9,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,2,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0,0,0,0,0,1,12,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,1,0,0,0,0,12,1,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0],[12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0] >;
C3×S3×S4 in GAP, Magma, Sage, TeX
C_3\times S_3\times S_4
% in TeX
G:=Group("C3xS3xS4");
// GroupNames label
G:=SmallGroup(432,745);
// by ID
G=gap.SmallGroup(432,745);
# by ID
G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,346,2524,4548,782,2659,1350]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^3=c^2=d^2=e^2=f^3=g^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*d*f^-1=g*d*g=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g=f^-1>;
// generators/relations