Extensions 1→N→G→Q→1 with N=C3xC6 and Q=C3xQ8

Direct product G=NxQ with N=C3xC6 and Q=C3xQ8
dρLabelID
Q8xC32xC6432Q8xC3^2xC6432,732

Semidirect products G=N:Q with N=C3xC6 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C3xC6):(C3xQ8) = C6xPSU3(F2)φ: C3xQ8/C3Q8 ⊆ Aut C3xC6488(C3xC6):(C3xQ8)432,757
(C3xC6):2(C3xQ8) = C2xHe3:3Q8φ: C3xQ8/C4C6 ⊆ Aut C3xC6144(C3xC6):2(C3xQ8)432,348
(C3xC6):3(C3xQ8) = C6xC32:2Q8φ: C3xQ8/C6C22 ⊆ Aut C3xC648(C3xC6):3(C3xQ8)432,657
(C3xC6):4(C3xQ8) = C2xQ8xHe3φ: C3xQ8/Q8C3 ⊆ Aut C3xC6144(C3xC6):4(C3xQ8)432,407
(C3xC6):5(C3xQ8) = C3xC6xDic6φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6):5(C3xQ8)432,700
(C3xC6):6(C3xQ8) = C6xC32:4Q8φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6):6(C3xQ8)432,710

Non-split extensions G=N.Q with N=C3xC6 and Q=C3xQ8
extensionφ:Q→Aut NdρLabelID
(C3xC6).(C3xQ8) = C3xC2.PSU3(F2)φ: C3xQ8/C3Q8 ⊆ Aut C3xC6488(C3xC6).(C3xQ8)432,591
(C3xC6).2(C3xQ8) = C62.19D6φ: C3xQ8/C4C6 ⊆ Aut C3xC6144(C3xC6).2(C3xQ8)432,139
(C3xC6).3(C3xQ8) = C62.20D6φ: C3xQ8/C4C6 ⊆ Aut C3xC6144(C3xC6).3(C3xQ8)432,140
(C3xC6).4(C3xQ8) = C3xDic3:Dic3φ: C3xQ8/C6C22 ⊆ Aut C3xC648(C3xC6).4(C3xQ8)432,428
(C3xC6).5(C3xQ8) = C3xC62.C22φ: C3xQ8/C6C22 ⊆ Aut C3xC648(C3xC6).5(C3xQ8)432,429
(C3xC6).6(C3xQ8) = C4:C4xHe3φ: C3xQ8/Q8C3 ⊆ Aut C3xC6144(C3xC6).6(C3xQ8)432,207
(C3xC6).7(C3xQ8) = C4:C4x3- 1+2φ: C3xQ8/Q8C3 ⊆ Aut C3xC6144(C3xC6).7(C3xQ8)432,208
(C3xC6).8(C3xQ8) = C2xQ8x3- 1+2φ: C3xQ8/Q8C3 ⊆ Aut C3xC6144(C3xC6).8(C3xQ8)432,408
(C3xC6).9(C3xQ8) = C9xDic3:C4φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6).9(C3xQ8)432,132
(C3xC6).10(C3xQ8) = C9xC4:Dic3φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6).10(C3xQ8)432,133
(C3xC6).11(C3xQ8) = C18xDic6φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6).11(C3xQ8)432,341
(C3xC6).12(C3xQ8) = C32xDic3:C4φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6).12(C3xQ8)432,472
(C3xC6).13(C3xQ8) = C32xC4:Dic3φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6).13(C3xQ8)432,473
(C3xC6).14(C3xQ8) = C3xC6.Dic6φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6).14(C3xQ8)432,488
(C3xC6).15(C3xQ8) = C3xC12:Dic3φ: C3xQ8/C12C2 ⊆ Aut C3xC6144(C3xC6).15(C3xQ8)432,489
(C3xC6).16(C3xQ8) = C4:C4xC3xC9central extension (φ=1)432(C3xC6).16(C3xQ8)432,206
(C3xC6).17(C3xQ8) = Q8xC3xC18central extension (φ=1)432(C3xC6).17(C3xQ8)432,406
(C3xC6).18(C3xQ8) = C4:C4xC33central extension (φ=1)432(C3xC6).18(C3xQ8)432,514

׿
x
:
Z
F
o
wr
Q
<