extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC6).(C3xQ8) = C3xC2.PSU3(F2) | φ: C3xQ8/C3 → Q8 ⊆ Aut C3xC6 | 48 | 8 | (C3xC6).(C3xQ8) | 432,591 |
(C3xC6).2(C3xQ8) = C62.19D6 | φ: C3xQ8/C4 → C6 ⊆ Aut C3xC6 | 144 | | (C3xC6).2(C3xQ8) | 432,139 |
(C3xC6).3(C3xQ8) = C62.20D6 | φ: C3xQ8/C4 → C6 ⊆ Aut C3xC6 | 144 | | (C3xC6).3(C3xQ8) | 432,140 |
(C3xC6).4(C3xQ8) = C3xDic3:Dic3 | φ: C3xQ8/C6 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).4(C3xQ8) | 432,428 |
(C3xC6).5(C3xQ8) = C3xC62.C22 | φ: C3xQ8/C6 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).5(C3xQ8) | 432,429 |
(C3xC6).6(C3xQ8) = C4:C4xHe3 | φ: C3xQ8/Q8 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).6(C3xQ8) | 432,207 |
(C3xC6).7(C3xQ8) = C4:C4x3- 1+2 | φ: C3xQ8/Q8 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).7(C3xQ8) | 432,208 |
(C3xC6).8(C3xQ8) = C2xQ8x3- 1+2 | φ: C3xQ8/Q8 → C3 ⊆ Aut C3xC6 | 144 | | (C3xC6).8(C3xQ8) | 432,408 |
(C3xC6).9(C3xQ8) = C9xDic3:C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).9(C3xQ8) | 432,132 |
(C3xC6).10(C3xQ8) = C9xC4:Dic3 | φ: C3xQ8/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).10(C3xQ8) | 432,133 |
(C3xC6).11(C3xQ8) = C18xDic6 | φ: C3xQ8/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).11(C3xQ8) | 432,341 |
(C3xC6).12(C3xQ8) = C32xDic3:C4 | φ: C3xQ8/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).12(C3xQ8) | 432,472 |
(C3xC6).13(C3xQ8) = C32xC4:Dic3 | φ: C3xQ8/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).13(C3xQ8) | 432,473 |
(C3xC6).14(C3xQ8) = C3xC6.Dic6 | φ: C3xQ8/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).14(C3xQ8) | 432,488 |
(C3xC6).15(C3xQ8) = C3xC12:Dic3 | φ: C3xQ8/C12 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).15(C3xQ8) | 432,489 |
(C3xC6).16(C3xQ8) = C4:C4xC3xC9 | central extension (φ=1) | 432 | | (C3xC6).16(C3xQ8) | 432,206 |
(C3xC6).17(C3xQ8) = Q8xC3xC18 | central extension (φ=1) | 432 | | (C3xC6).17(C3xQ8) | 432,406 |
(C3xC6).18(C3xQ8) = C4:C4xC33 | central extension (φ=1) | 432 | | (C3xC6).18(C3xQ8) | 432,514 |