extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C3⋊S3)⋊1D4 = C6×S3≀C2 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3):1D4 | 432,754 |
(C3×C3⋊S3)⋊2D4 = D6⋊4S32 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 8+ | (C3xC3:S3):2D4 | 432,599 |
(C3×C3⋊S3)⋊3D4 = D6⋊S32 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 48 | 8- | (C3xC3:S3):3D4 | 432,600 |
(C3×C3⋊S3)⋊4D4 = C3⋊S3⋊4D12 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 8+ | (C3xC3:S3):4D4 | 432,602 |
(C3×C3⋊S3)⋊5D4 = C2×C33⋊D4 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3):5D4 | 432,755 |
(C3×C3⋊S3)⋊6D4 = C2×C32⋊2D12 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 8+ | (C3xC3:S3):6D4 | 432,756 |
(C3×C3⋊S3)⋊7D4 = C3×D6⋊D6 | φ: D4/C4 → C2 ⊆ Out C3×C3⋊S3 | 48 | 4 | (C3xC3:S3):7D4 | 432,650 |
(C3×C3⋊S3)⋊8D4 = C3⋊S3×D12 | φ: D4/C4 → C2 ⊆ Out C3×C3⋊S3 | 72 | | (C3xC3:S3):8D4 | 432,672 |
(C3×C3⋊S3)⋊9D4 = C12⋊3S32 | φ: D4/C4 → C2 ⊆ Out C3×C3⋊S3 | 48 | 4 | (C3xC3:S3):9D4 | 432,691 |
(C3×C3⋊S3)⋊10D4 = C3×Dic3⋊D6 | φ: D4/C22 → C2 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3):10D4 | 432,659 |
(C3×C3⋊S3)⋊11D4 = C3⋊S3×C3⋊D4 | φ: D4/C22 → C2 ⊆ Out C3×C3⋊S3 | 72 | | (C3xC3:S3):11D4 | 432,685 |
(C3×C3⋊S3)⋊12D4 = C62⋊24D6 | φ: D4/C22 → C2 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3):12D4 | 432,696 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C3⋊S3).1D4 = C3×AΓL1(𝔽9) | φ: D4/C1 → D4 ⊆ Out C3×C3⋊S3 | 24 | 8 | (C3xC3:S3).1D4 | 432,737 |
(C3×C3⋊S3).2D4 = C33⋊SD16 | φ: D4/C1 → D4 ⊆ Out C3×C3⋊S3 | 24 | 8 | (C3xC3:S3).2D4 | 432,738 |
(C3×C3⋊S3).3D4 = C33⋊3SD16 | φ: D4/C1 → D4 ⊆ Out C3×C3⋊S3 | 24 | 16+ | (C3xC3:S3).3D4 | 432,739 |
(C3×C3⋊S3).4D4 = F9⋊S3 | φ: D4/C1 → D4 ⊆ Out C3×C3⋊S3 | 24 | 16+ | (C3xC3:S3).4D4 | 432,740 |
(C3×C3⋊S3).5D4 = C3×S32⋊C4 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3).5D4 | 432,574 |
(C3×C3⋊S3).6D4 = C3×C2.PSU3(𝔽2) | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 48 | 8 | (C3xC3:S3).6D4 | 432,591 |
(C3×C3⋊S3).7D4 = D6⋊(C32⋊C4) | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 8+ | (C3xC3:S3).7D4 | 432,568 |
(C3×C3⋊S3).8D4 = C33⋊(C4⋊C4) | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 48 | 8- | (C3xC3:S3).8D4 | 432,569 |
(C3×C3⋊S3).9D4 = C3⋊S3.2D12 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3).9D4 | 432,579 |
(C3×C3⋊S3).10D4 = S32⋊Dic3 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3).10D4 | 432,580 |
(C3×C3⋊S3).11D4 = (C3×C6).8D12 | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 24 | 8+ | (C3xC3:S3).11D4 | 432,586 |
(C3×C3⋊S3).12D4 = C6.PSU3(𝔽2) | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 48 | 8 | (C3xC3:S3).12D4 | 432,592 |
(C3×C3⋊S3).13D4 = C6.2PSU3(𝔽2) | φ: D4/C2 → C22 ⊆ Out C3×C3⋊S3 | 48 | 8 | (C3xC3:S3).13D4 | 432,593 |
(C3×C3⋊S3).14D4 = C3×C4⋊(C32⋊C4) | φ: D4/C4 → C2 ⊆ Out C3×C3⋊S3 | 48 | 4 | (C3xC3:S3).14D4 | 432,631 |
(C3×C3⋊S3).15D4 = C33⋊9(C4⋊C4) | φ: D4/C4 → C2 ⊆ Out C3×C3⋊S3 | 48 | 4 | (C3xC3:S3).15D4 | 432,638 |
(C3×C3⋊S3).16D4 = C3×C62⋊C4 | φ: D4/C22 → C2 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3).16D4 | 432,634 |
(C3×C3⋊S3).17D4 = C62⋊11Dic3 | φ: D4/C22 → C2 ⊆ Out C3×C3⋊S3 | 24 | 4 | (C3xC3:S3).17D4 | 432,641 |