Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=D4

Direct product G=N×Q with N=C3×C3⋊S3 and Q=D4
dρLabelID
C3×D4×C3⋊S372C3xD4xC3:S3432,714

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊1D4 = C6×S3≀C2φ: D4/C2C22 ⊆ Out C3×C3⋊S3244(C3xC3:S3):1D4432,754
(C3×C3⋊S3)⋊2D4 = D64S32φ: D4/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3):2D4432,599
(C3×C3⋊S3)⋊3D4 = D6⋊S32φ: D4/C2C22 ⊆ Out C3×C3⋊S3488-(C3xC3:S3):3D4432,600
(C3×C3⋊S3)⋊4D4 = C3⋊S34D12φ: D4/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3):4D4432,602
(C3×C3⋊S3)⋊5D4 = C2×C33⋊D4φ: D4/C2C22 ⊆ Out C3×C3⋊S3244(C3xC3:S3):5D4432,755
(C3×C3⋊S3)⋊6D4 = C2×C322D12φ: D4/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3):6D4432,756
(C3×C3⋊S3)⋊7D4 = C3×D6⋊D6φ: D4/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3):7D4432,650
(C3×C3⋊S3)⋊8D4 = C3⋊S3×D12φ: D4/C4C2 ⊆ Out C3×C3⋊S372(C3xC3:S3):8D4432,672
(C3×C3⋊S3)⋊9D4 = C123S32φ: D4/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3):9D4432,691
(C3×C3⋊S3)⋊10D4 = C3×Dic3⋊D6φ: D4/C22C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):10D4432,659
(C3×C3⋊S3)⋊11D4 = C3⋊S3×C3⋊D4φ: D4/C22C2 ⊆ Out C3×C3⋊S372(C3xC3:S3):11D4432,685
(C3×C3⋊S3)⋊12D4 = C6224D6φ: D4/C22C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3):12D4432,696

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).1D4 = C3×AΓL1(𝔽9)φ: D4/C1D4 ⊆ Out C3×C3⋊S3248(C3xC3:S3).1D4432,737
(C3×C3⋊S3).2D4 = C33⋊SD16φ: D4/C1D4 ⊆ Out C3×C3⋊S3248(C3xC3:S3).2D4432,738
(C3×C3⋊S3).3D4 = C333SD16φ: D4/C1D4 ⊆ Out C3×C3⋊S32416+(C3xC3:S3).3D4432,739
(C3×C3⋊S3).4D4 = F9⋊S3φ: D4/C1D4 ⊆ Out C3×C3⋊S32416+(C3xC3:S3).4D4432,740
(C3×C3⋊S3).5D4 = C3×S32⋊C4φ: D4/C2C22 ⊆ Out C3×C3⋊S3244(C3xC3:S3).5D4432,574
(C3×C3⋊S3).6D4 = C3×C2.PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C3×C3⋊S3488(C3xC3:S3).6D4432,591
(C3×C3⋊S3).7D4 = D6⋊(C32⋊C4)φ: D4/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3).7D4432,568
(C3×C3⋊S3).8D4 = C33⋊(C4⋊C4)φ: D4/C2C22 ⊆ Out C3×C3⋊S3488-(C3xC3:S3).8D4432,569
(C3×C3⋊S3).9D4 = C3⋊S3.2D12φ: D4/C2C22 ⊆ Out C3×C3⋊S3244(C3xC3:S3).9D4432,579
(C3×C3⋊S3).10D4 = S32⋊Dic3φ: D4/C2C22 ⊆ Out C3×C3⋊S3244(C3xC3:S3).10D4432,580
(C3×C3⋊S3).11D4 = (C3×C6).8D12φ: D4/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3).11D4432,586
(C3×C3⋊S3).12D4 = C6.PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C3×C3⋊S3488(C3xC3:S3).12D4432,592
(C3×C3⋊S3).13D4 = C6.2PSU3(𝔽2)φ: D4/C2C22 ⊆ Out C3×C3⋊S3488(C3xC3:S3).13D4432,593
(C3×C3⋊S3).14D4 = C3×C4⋊(C32⋊C4)φ: D4/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3).14D4432,631
(C3×C3⋊S3).15D4 = C339(C4⋊C4)φ: D4/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3).15D4432,638
(C3×C3⋊S3).16D4 = C3×C62⋊C4φ: D4/C22C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3).16D4432,634
(C3×C3⋊S3).17D4 = C6211Dic3φ: D4/C22C2 ⊆ Out C3×C3⋊S3244(C3xC3:S3).17D4432,641

׿
×
𝔽