Extensions 1→N→G→Q→1 with N=C2×C3.A4 and Q=C6

Direct product G=N×Q with N=C2×C3.A4 and Q=C6
dρLabelID
C2×C6×C3.A4108C2xC6xC3.A4432,548

Semidirect products G=N:Q with N=C2×C3.A4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×C3.A4)⋊C6 = C2×C32.S4φ: C6/C1C6 ⊆ Out C2×C3.A4186+(C2xC3.A4):C6432,533
(C2×C3.A4)⋊2C6 = C22×C9⋊A4φ: C6/C2C3 ⊆ Out C2×C3.A4108(C2xC3.A4):2C6432,547
(C2×C3.A4)⋊3C6 = C22×C32.A4φ: C6/C2C3 ⊆ Out C2×C3.A436(C2xC3.A4):3C6432,549
(C2×C3.A4)⋊4C6 = C6×C3.S4φ: C6/C3C2 ⊆ Out C2×C3.A4366(C2xC3.A4):4C6432,534
(C2×C3.A4)⋊5C6 = A4×C2×C18φ: trivial image108(C2xC3.A4):5C6432,546

Non-split extensions G=N.Q with N=C2×C3.A4 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×C3.A4).C6 = C62.Dic3φ: C6/C1C6 ⊆ Out C2×C3.A4366-(C2xC3.A4).C6432,249
(C2×C3.A4).2C6 = C4×C9⋊A4φ: C6/C2C3 ⊆ Out C2×C3.A41083(C2xC3.A4).2C6432,326
(C2×C3.A4).3C6 = C4×C32.A4φ: C6/C2C3 ⊆ Out C2×C3.A4363(C2xC3.A4).3C6432,332
(C2×C3.A4).4C6 = C3×C6.S4φ: C6/C3C2 ⊆ Out C2×C3.A4366(C2xC3.A4).4C6432,250
(C2×C3.A4).5C6 = A4×C36φ: trivial image1083(C2xC3.A4).5C6432,325
(C2×C3.A4).6C6 = C12×C3.A4φ: trivial image108(C2xC3.A4).6C6432,331

׿
×
𝔽