direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C3.A4, C23⋊C9, C22⋊C18, C6.2A4, C3.(C2×A4), (C2×C6).C6, (C22×C6).C3, SmallGroup(72,16)
Series: Derived ►Chief ►Lower central ►Upper central
C22 — C2×C3.A4 |
Generators and relations for C2×C3.A4
G = < a,b,c,d,e | a2=b3=c2=d2=1, e3=b, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >
Character table of C2×C3.A4
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 9A | 9B | 9C | 9D | 9E | 9F | 18A | 18B | 18C | 18D | 18E | 18F | |
size | 1 | 1 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | linear of order 6 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | linear of order 6 |
ρ7 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ9 | ζ97 | ζ92 | ζ95 | ζ98 | ζ94 | ζ9 | ζ94 | ζ97 | ζ92 | ζ95 | ζ98 | linear of order 9 |
ρ8 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ95 | ζ98 | ζ9 | ζ97 | ζ94 | ζ92 | -ζ95 | -ζ92 | -ζ98 | -ζ9 | -ζ97 | -ζ94 | linear of order 18 |
ρ9 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ94 | ζ9 | ζ98 | ζ92 | ζ95 | ζ97 | ζ94 | ζ97 | ζ9 | ζ98 | ζ92 | ζ95 | linear of order 9 |
ρ10 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ9 | ζ97 | ζ92 | ζ95 | ζ98 | ζ94 | -ζ9 | -ζ94 | -ζ97 | -ζ92 | -ζ95 | -ζ98 | linear of order 18 |
ρ11 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ97 | ζ94 | ζ95 | ζ98 | ζ92 | ζ9 | -ζ97 | -ζ9 | -ζ94 | -ζ95 | -ζ98 | -ζ92 | linear of order 18 |
ρ12 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ95 | ζ98 | ζ9 | ζ97 | ζ94 | ζ92 | ζ95 | ζ92 | ζ98 | ζ9 | ζ97 | ζ94 | linear of order 9 |
ρ13 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ94 | ζ9 | ζ98 | ζ92 | ζ95 | ζ97 | -ζ94 | -ζ97 | -ζ9 | -ζ98 | -ζ92 | -ζ95 | linear of order 18 |
ρ14 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ92 | ζ95 | ζ94 | ζ9 | ζ97 | ζ98 | -ζ92 | -ζ98 | -ζ95 | -ζ94 | -ζ9 | -ζ97 | linear of order 18 |
ρ15 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ92 | ζ95 | ζ94 | ζ9 | ζ97 | ζ98 | ζ92 | ζ98 | ζ95 | ζ94 | ζ9 | ζ97 | linear of order 9 |
ρ16 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ98 | ζ92 | ζ97 | ζ94 | ζ9 | ζ95 | ζ98 | ζ95 | ζ92 | ζ97 | ζ94 | ζ9 | linear of order 9 |
ρ17 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ98 | ζ92 | ζ97 | ζ94 | ζ9 | ζ95 | -ζ98 | -ζ95 | -ζ92 | -ζ97 | -ζ94 | -ζ9 | linear of order 18 |
ρ18 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ97 | ζ94 | ζ95 | ζ98 | ζ92 | ζ9 | ζ97 | ζ9 | ζ94 | ζ95 | ζ98 | ζ92 | linear of order 9 |
ρ19 | 3 | 3 | -1 | -1 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ20 | 3 | -3 | 1 | -1 | 3 | 3 | -3 | -3 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ21 | 3 | 3 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | ζ65 | ζ6 | ζ6 | ζ65 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
ρ22 | 3 | -3 | 1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 3+3√-3/2 | 3-3√-3/2 | ζ6 | ζ65 | ζ3 | ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 3 | -3 | 1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 3-3√-3/2 | 3+3√-3/2 | ζ65 | ζ6 | ζ32 | ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 3 | 3 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | ζ6 | ζ65 | ζ65 | ζ6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C3.A4 |
(1 16)(2 17)(3 18)(4 10)(5 11)(6 12)(7 13)(8 14)(9 15)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)
(2 17)(3 18)(5 11)(6 12)(8 14)(9 15)
(1 16)(3 18)(4 10)(6 12)(7 13)(9 15)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (2,17)(3,18)(5,11)(6,12)(8,14)(9,15), (1,16)(3,18)(4,10)(6,12)(7,13)(9,15), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)>;
G:=Group( (1,16)(2,17)(3,18)(4,10)(5,11)(6,12)(7,13)(8,14)(9,15), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18), (2,17)(3,18)(5,11)(6,12)(8,14)(9,15), (1,16)(3,18)(4,10)(6,12)(7,13)(9,15), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,10),(5,11),(6,12),(7,13),(8,14),(9,15)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18)], [(2,17),(3,18),(5,11),(6,12),(8,14),(9,15)], [(1,16),(3,18),(4,10),(6,12),(7,13),(9,15)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,26);
C2×C3.A4 is a maximal subgroup of
C6.S4 A4×C18 C2.(C42⋊C9) C24⋊C18 C42⋊C18 C42⋊2C18 C22⋊(Q8⋊C9) 2+ 1+4⋊2C9
C2×C3.A4 is a maximal quotient of
Q8.C18 C24⋊C18 C42⋊C18 C42⋊2C18
Matrix representation of C2×C3.A4 ►in GL3(𝔽7) generated by
6 | 0 | 0 |
0 | 6 | 0 |
0 | 0 | 6 |
4 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
6 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 6 |
6 | 0 | 0 |
0 | 6 | 0 |
0 | 0 | 1 |
0 | 0 | 4 |
6 | 0 | 0 |
0 | 6 | 0 |
G:=sub<GL(3,GF(7))| [6,0,0,0,6,0,0,0,6],[4,0,0,0,4,0,0,0,4],[6,0,0,0,1,0,0,0,6],[6,0,0,0,6,0,0,0,1],[0,6,0,0,0,6,4,0,0] >;
C2×C3.A4 in GAP, Magma, Sage, TeX
C_2\times C_3.A_4
% in TeX
G:=Group("C2xC3.A4");
// GroupNames label
G:=SmallGroup(72,16);
// by ID
G=gap.SmallGroup(72,16);
# by ID
G:=PCGroup([5,-2,-3,-3,-2,2,36,368,684]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^2=d^2=1,e^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations
Export
Subgroup lattice of C2×C3.A4 in TeX
Character table of C2×C3.A4 in TeX