Extensions 1→N→G→Q→1 with N=C3×D6⋊S3 and Q=C2

Direct product G=N×Q with N=C3×D6⋊S3 and Q=C2
dρLabelID
C6×D6⋊S348C6xD6:S3432,655

Semidirect products G=N:Q with N=C3×D6⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D6⋊S3)⋊1C2 = C33⋊D8φ: C2/C1C2 ⊆ Out C3×D6⋊S3244(C3xD6:S3):1C2432,582
(C3×D6⋊S3)⋊2C2 = S3×D6⋊S3φ: C2/C1C2 ⊆ Out C3×D6⋊S3488-(C3xD6:S3):2C2432,597
(C3×D6⋊S3)⋊3C2 = D64S32φ: C2/C1C2 ⊆ Out C3×D6⋊S3248+(C3xD6:S3):3C2432,599
(C3×D6⋊S3)⋊4C2 = (S3×C6)⋊D6φ: C2/C1C2 ⊆ Out C3×D6⋊S3248+(C3xD6:S3):4C2432,601
(C3×D6⋊S3)⋊5C2 = (S3×C6).D6φ: C2/C1C2 ⊆ Out C3×D6⋊S3248+(C3xD6:S3):5C2432,606
(C3×D6⋊S3)⋊6C2 = D6.4S32φ: C2/C1C2 ⊆ Out C3×D6⋊S3488-(C3xD6:S3):6C2432,608
(C3×D6⋊S3)⋊7C2 = D6⋊S3⋊S3φ: C2/C1C2 ⊆ Out C3×D6⋊S3488-(C3xD6:S3):7C2432,610
(C3×D6⋊S3)⋊8C2 = C3×C32⋊D8φ: C2/C1C2 ⊆ Out C3×D6⋊S3244(C3xD6:S3):8C2432,576
(C3×D6⋊S3)⋊9C2 = C3×D125S3φ: C2/C1C2 ⊆ Out C3×D6⋊S3484(C3xD6:S3):9C2432,643
(C3×D6⋊S3)⋊10C2 = C3×D6⋊D6φ: C2/C1C2 ⊆ Out C3×D6⋊S3484(C3xD6:S3):10C2432,650
(C3×D6⋊S3)⋊11C2 = C3×D6.4D6φ: C2/C1C2 ⊆ Out C3×D6⋊S3244(C3xD6:S3):11C2432,653
(C3×D6⋊S3)⋊12C2 = C3×S3×C3⋊D4φ: C2/C1C2 ⊆ Out C3×D6⋊S3244(C3xD6:S3):12C2432,658
(C3×D6⋊S3)⋊13C2 = C3×D6.D6φ: trivial image484(C3xD6:S3):13C2432,646

Non-split extensions G=N.Q with N=C3×D6⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D6⋊S3).1C2 = C337SD16φ: C2/C1C2 ⊆ Out C3×D6⋊S3244(C3xD6:S3).1C2432,584
(C3×D6⋊S3).2C2 = C3×C322SD16φ: C2/C1C2 ⊆ Out C3×D6⋊S3244(C3xD6:S3).2C2432,577

׿
×
𝔽