Copied to
clipboard

G = C6xD6:S3order 432 = 24·33

Direct product of C6 and D6:S3

direct product, metabelian, supersoluble, monomial

Aliases: C6xD6:S3, C62.110D6, D6:4(S3xC6), (S3xC6):15D6, (C32xC6):4D4, C32:7(C6xD4), C33:17(C2xD4), (S3xC62):1C2, C62.26(C2xC6), (C32xC6).33C23, (C3xC62).20C22, (S3xC2xC6):3C6, (S3xC2xC6):3S3, C2.14(S32xC6), (C2xC6).73S32, (C3xC6):4(C3xD4), C6:2(C3xC3:D4), C3:3(C6xC3:D4), C6.14(S3xC2xC6), (S3xC6):4(C2xC6), C6.117(C2xS32), (C2xC6).28(S3xC6), (S3xC3xC6):16C22, C3:Dic3:9(C2xC6), C22.10(C3xS32), (C3xC6):11(C3:D4), (C22xS3):3(C3xS3), (C2xC3:Dic3):12C6, (C6xC3:Dic3):16C2, C32:20(C2xC3:D4), (C3xC6).24(C22xC6), (C3xC6).138(C22xS3), (C3xC3:Dic3):23C22, SmallGroup(432,655)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C6xD6:S3
C1C3C32C3xC6C32xC6S3xC3xC6C3xD6:S3 — C6xD6:S3
C32C3xC6 — C6xD6:S3
C1C2xC6

Generators and relations for C6xD6:S3
 G = < a,b,c,d,e | a6=b6=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b3c, ede=d-1 >

Subgroups: 960 in 306 conjugacy classes, 80 normal (16 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2xC4, D4, C23, C32, C32, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C2xD4, C3xS3, C3xC6, C3xC6, C3xC6, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C33, C3xDic3, C3:Dic3, S3xC6, S3xC6, C62, C62, C62, C2xC3:D4, C6xD4, S3xC32, C32xC6, C32xC6, D6:S3, C6xDic3, C3xC3:D4, C2xC3:Dic3, S3xC2xC6, S3xC2xC6, C2xC62, C3xC3:Dic3, S3xC3xC6, S3xC3xC6, C3xC62, C2xD6:S3, C6xC3:D4, C3xD6:S3, C6xC3:Dic3, S3xC62, C6xD6:S3
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, S32, S3xC6, C2xC3:D4, C6xD4, D6:S3, C3xC3:D4, C2xS32, S3xC2xC6, C3xS32, C2xD6:S3, C6xC3:D4, C3xD6:S3, S32xC6, C6xD6:S3

Smallest permutation representation of C6xD6:S3
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 18 5 16 3 14)(2 13 6 17 4 15)(7 45 9 47 11 43)(8 46 10 48 12 44)(19 27 21 29 23 25)(20 28 22 30 24 26)(31 37 35 41 33 39)(32 38 36 42 34 40)
(1 30)(2 25)(3 26)(4 27)(5 28)(6 29)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 23)(14 24)(15 19)(16 20)(17 21)(18 22)(31 45)(32 46)(33 47)(34 48)(35 43)(36 44)
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 33)(2 34)(3 35)(4 36)(5 31)(6 32)(7 30)(8 25)(9 26)(10 27)(11 28)(12 29)(13 40)(14 41)(15 42)(16 37)(17 38)(18 39)(19 46)(20 47)(21 48)(22 43)(23 44)(24 45)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,45,9,47,11,43)(8,46,10,48,12,44)(19,27,21,29,23,25)(20,28,22,30,24,26)(31,37,35,41,33,39)(32,38,36,42,34,40), (1,30)(2,25)(3,26)(4,27)(5,28)(6,29)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22)(31,45)(32,46)(33,47)(34,48)(35,43)(36,44), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,40)(14,41)(15,42)(16,37)(17,38)(18,39)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,18,5,16,3,14)(2,13,6,17,4,15)(7,45,9,47,11,43)(8,46,10,48,12,44)(19,27,21,29,23,25)(20,28,22,30,24,26)(31,37,35,41,33,39)(32,38,36,42,34,40), (1,30)(2,25)(3,26)(4,27)(5,28)(6,29)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22)(31,45)(32,46)(33,47)(34,48)(35,43)(36,44), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,33)(2,34)(3,35)(4,36)(5,31)(6,32)(7,30)(8,25)(9,26)(10,27)(11,28)(12,29)(13,40)(14,41)(15,42)(16,37)(17,38)(18,39)(19,46)(20,47)(21,48)(22,43)(23,44)(24,45) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,18,5,16,3,14),(2,13,6,17,4,15),(7,45,9,47,11,43),(8,46,10,48,12,44),(19,27,21,29,23,25),(20,28,22,30,24,26),(31,37,35,41,33,39),(32,38,36,42,34,40)], [(1,30),(2,25),(3,26),(4,27),(5,28),(6,29),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,23),(14,24),(15,19),(16,20),(17,21),(18,22),(31,45),(32,46),(33,47),(34,48),(35,43),(36,44)], [(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,33),(2,34),(3,35),(4,36),(5,31),(6,32),(7,30),(8,25),(9,26),(10,27),(11,28),(12,29),(13,40),(14,41),(15,42),(16,37),(17,38),(18,39),(19,46),(20,47),(21,48),(22,43),(23,44),(24,45)]])

90 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C···3H3I3J3K4A4B6A···6F6G···6X6Y···6AG6AH···6BM12A12B12C12D
order12222222333···3333446···66···66···66···612121212
size11116666112···244418181···12···24···46···618181818

90 irreducible representations

dim111111112222222222444444
type+++++++++-+
imageC1C2C2C2C3C6C6C6S3D4D6D6C3xS3C3:D4C3xD4S3xC6S3xC6C3xC3:D4S32D6:S3C2xS32C3xS32C3xD6:S3S32xC6
kernelC6xD6:S3C3xD6:S3C6xC3:Dic3S3xC62C2xD6:S3D6:S3C2xC3:Dic3S3xC2xC6S3xC2xC6C32xC6S3xC6C62C22xS3C3xC6C3xC6D6C2xC6C6C2xC6C6C6C22C2C2
# reps1412282422424848416121242

Matrix representation of C6xD6:S3 in GL6(F13)

300000
030000
004000
000400
000010
000001
,
1200000
0120000
001000
000100
0000012
0000112
,
130000
0120000
0012000
0001200
0000112
0000012
,
100000
010000
00121200
001000
000010
000001
,
440000
690000
0001200
0012000
000010
000001

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,3,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,12,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,6,0,0,0,0,4,9,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C6xD6:S3 in GAP, Magma, Sage, TeX

C_6\times D_6\rtimes S_3
% in TeX

G:=Group("C6xD6:S3");
// GroupNames label

G:=SmallGroup(432,655);
// by ID

G=gap.SmallGroup(432,655);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,365,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^3*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<