Extensions 1→N→G→Q→1 with N=C3×C3⋊D12 and Q=C2

Direct product G=N×Q with N=C3×C3⋊D12 and Q=C2
dρLabelID
C6×C3⋊D1248C6xC3:D12432,656

Semidirect products G=N:Q with N=C3×C3⋊D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3⋊D12)⋊1C2 = S3×C3⋊D12φ: C2/C1C2 ⊆ Out C3×C3⋊D12248+(C3xC3:D12):1C2432,598
(C3×C3⋊D12)⋊2C2 = D6⋊S32φ: C2/C1C2 ⊆ Out C3×C3⋊D12488-(C3xC3:D12):2C2432,600
(C3×C3⋊D12)⋊3C2 = (S3×C6)⋊D6φ: C2/C1C2 ⊆ Out C3×C3⋊D12248+(C3xC3:D12):3C2432,601
(C3×C3⋊D12)⋊4C2 = C3⋊S34D12φ: C2/C1C2 ⊆ Out C3×C3⋊D12248+(C3xC3:D12):4C2432,602
(C3×C3⋊D12)⋊5C2 = D6.S32φ: C2/C1C2 ⊆ Out C3×C3⋊D12488-(C3xC3:D12):5C2432,607
(C3×C3⋊D12)⋊6C2 = D6.4S32φ: C2/C1C2 ⊆ Out C3×C3⋊D12488-(C3xC3:D12):6C2432,608
(C3×C3⋊D12)⋊7C2 = D6.3S32φ: C2/C1C2 ⊆ Out C3×C3⋊D12248+(C3xC3:D12):7C2432,609
(C3×C3⋊D12)⋊8C2 = D6.6S32φ: C2/C1C2 ⊆ Out C3×C3⋊D12488-(C3xC3:D12):8C2432,611
(C3×C3⋊D12)⋊9C2 = C3×D12⋊S3φ: C2/C1C2 ⊆ Out C3×C3⋊D12484(C3xC3:D12):9C2432,644
(C3×C3⋊D12)⋊10C2 = C3×D6.6D6φ: C2/C1C2 ⊆ Out C3×C3⋊D12484(C3xC3:D12):10C2432,647
(C3×C3⋊D12)⋊11C2 = C3×S3×C3⋊D4φ: C2/C1C2 ⊆ Out C3×C3⋊D12244(C3xC3:D12):11C2432,658
(C3×C3⋊D12)⋊12C2 = C3×Dic3⋊D6φ: C2/C1C2 ⊆ Out C3×C3⋊D12244(C3xC3:D12):12C2432,659
(C3×C3⋊D12)⋊13C2 = C3×S3×D12φ: C2/C1C2 ⊆ Out C3×C3⋊D12484(C3xC3:D12):13C2432,649
(C3×C3⋊D12)⋊14C2 = C3×D6.3D6φ: C2/C1C2 ⊆ Out C3×C3⋊D12244(C3xC3:D12):14C2432,652
(C3×C3⋊D12)⋊15C2 = C3×D6.D6φ: trivial image484(C3xC3:D12):15C2432,646


׿
×
𝔽