Copied to
clipboard

G = C3xD6.6D6order 432 = 24·33

Direct product of C3 and D6.6D6

direct product, metabelian, supersoluble, monomial

Aliases: C3xD6.6D6, C12.80S32, (S3xC12):3S3, (S3xC12):3C6, D6.6(S3xC6), C3:D12:4C6, C12.43(S3xC6), Dic6:5(C3xS3), (C3xDic6):7C6, (S3xC6).38D6, C6.D6:1C6, C12:S3:10C6, (C3xDic6):11S3, (C3xC12).177D6, C33:11(C4oD4), Dic3.9(S3xC6), (C3xDic3).26D6, (C32xDic6):9C2, C32:19(C4oD12), (C32xC6).25C23, C32:11(Q8:3S3), (C32xC12).39C22, (C32xDic3).11C22, C2.9(S32xC6), C4.7(C3xS32), C6.6(S3xC2xC6), (S3xC3xC12):4C2, (C4xS3):2(C3xS3), C6.109(C2xS32), C3:1(C3xC4oD12), C3:1(C3xQ8:3S3), C32:7(C3xC4oD4), (C3xC12:S3):6C2, (S3xC6).13(C2xC6), (C3xC12).54(C2xC6), (C3xC6.D6):4C2, (S3xC3xC6).20C22, (C3xC3:D12):10C2, (C6xC3:S3).24C22, (C3xC6).16(C22xC6), (C3xDic3).9(C2xC6), (C3xC6).130(C22xS3), (C2xC3:S3).7(C2xC6), SmallGroup(432,647)

Series: Derived Chief Lower central Upper central

C1C3xC6 — C3xD6.6D6
C1C3C32C3xC6C32xC6S3xC3xC6C3xC3:D12 — C3xD6.6D6
C32C3xC6 — C3xD6.6D6
C1C6C12

Generators and relations for C3xD6.6D6
 G = < a,b,c,d,e | a3=b6=c2=1, d6=e2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=b3d5 >

Subgroups: 744 in 210 conjugacy classes, 64 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2xC4, D4, Q8, C32, C32, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C4oD4, C3xS3, C3:S3, C3xC6, C3xC6, Dic6, C4xS3, C4xS3, D12, C3:D4, C2xC12, C3xD4, C3xQ8, C33, C3xDic3, C3xDic3, C3xDic3, C3xC12, C3xC12, S3xC6, S3xC6, C2xC3:S3, C62, C4oD12, Q8:3S3, C3xC4oD4, S3xC32, C3xC3:S3, C32xC6, C6.D6, C3:D12, C3xDic6, C3xDic6, S3xC12, S3xC12, C3xD12, C3xC3:D4, C12:S3, C6xC12, Q8xC32, C32xDic3, C32xDic3, C32xC12, S3xC3xC6, C6xC3:S3, D6.6D6, C3xC4oD12, C3xQ8:3S3, C3xC6.D6, C3xC3:D12, C32xDic6, S3xC3xC12, C3xC12:S3, C3xD6.6D6
Quotients: C1, C2, C3, C22, S3, C6, C23, D6, C2xC6, C4oD4, C3xS3, C22xS3, C22xC6, S32, S3xC6, C4oD12, Q8:3S3, C3xC4oD4, C2xS32, S3xC2xC6, C3xS32, D6.6D6, C3xC4oD12, C3xQ8:3S3, S32xC6, C3xD6.6D6

Smallest permutation representation of C3xD6.6D6
On 48 points
Generators in S48
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 21 17)(14 22 18)(15 23 19)(16 24 20)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 11 9 7 5 3)(2 12 10 8 6 4)(13 15 17 19 21 23)(14 16 18 20 22 24)(25 27 29 31 33 35)(26 28 30 32 34 36)(37 47 45 43 41 39)(38 48 46 44 42 40)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 25)(10 26)(11 27)(12 28)(13 48)(14 37)(15 38)(16 39)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 19 7 13)(2 18 8 24)(3 17 9 23)(4 16 10 22)(5 15 11 21)(6 14 12 20)(25 40 31 46)(26 39 32 45)(27 38 33 44)(28 37 34 43)(29 48 35 42)(30 47 36 41)

G:=sub<Sym(48)| (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,48)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,18,8,24)(3,17,9,23)(4,16,10,22)(5,15,11,21)(6,14,12,20)(25,40,31,46)(26,39,32,45)(27,38,33,44)(28,37,34,43)(29,48,35,42)(30,47,36,41)>;

G:=Group( (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,21,17)(14,22,18)(15,23,19)(16,24,20)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,11,9,7,5,3)(2,12,10,8,6,4)(13,15,17,19,21,23)(14,16,18,20,22,24)(25,27,29,31,33,35)(26,28,30,32,34,36)(37,47,45,43,41,39)(38,48,46,44,42,40), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,25)(10,26)(11,27)(12,28)(13,48)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,18,8,24)(3,17,9,23)(4,16,10,22)(5,15,11,21)(6,14,12,20)(25,40,31,46)(26,39,32,45)(27,38,33,44)(28,37,34,43)(29,48,35,42)(30,47,36,41) );

G=PermutationGroup([[(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,21,17),(14,22,18),(15,23,19),(16,24,20),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,11,9,7,5,3),(2,12,10,8,6,4),(13,15,17,19,21,23),(14,16,18,20,22,24),(25,27,29,31,33,35),(26,28,30,32,34,36),(37,47,45,43,41,39),(38,48,46,44,42,40)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,25),(10,26),(11,27),(12,28),(13,48),(14,37),(15,38),(16,39),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,19,7,13),(2,18,8,24),(3,17,9,23),(4,16,10,22),(5,15,11,21),(6,14,12,20),(25,40,31,46),(26,39,32,45),(27,38,33,44),(28,37,34,43),(29,48,35,42),(30,47,36,41)]])

81 conjugacy classes

class 1 2A2B2C2D3A3B3C···3H3I3J3K4A4B4C4D4E6A6B6C···6H6I6J6K6L···6S6T6U6V6W12A···12H12I12J12K12L12M···12U12V···12AE12AF···12AK
order12222333···333344444666···66666···6666612···121212121212···1212···1212···12
size1161818112···244423366112···24446···6181818182···233334···46···612···12

81 irreducible representations

dim1111111111112222222222222244444444
type+++++++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6S3S3D6D6D6C4oD4C3xS3C3xS3S3xC6S3xC6S3xC6C4oD12C3xC4oD4C3xC4oD12S32Q8:3S3C2xS32C3xS32D6.6D6C3xQ8:3S3S32xC6C3xD6.6D6
kernelC3xD6.6D6C3xC6.D6C3xC3:D12C32xDic6S3xC3xC12C3xC12:S3D6.6D6C6.D6C3:D12C3xDic6S3xC12C12:S3C3xDic6S3xC12C3xDic3C3xC12S3xC6C33Dic6C4xS3Dic3C12D6C32C32C3C12C32C6C4C3C3C2C1
# reps1221112442221132122264244811122224

Matrix representation of C3xD6.6D6 in GL6(F13)

300000
030000
009000
000900
000010
000001
,
1200000
0120000
000100
00121200
000010
000001
,
130000
0120000
00121200
000100
000010
000001
,
8110000
050000
0012000
0001200
0000012
0000112
,
1080000
230000
001000
000100
0000112
0000012

G:=sub<GL(6,GF(13))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,3,12,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,11,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[10,2,0,0,0,0,8,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,12,12] >;

C3xD6.6D6 in GAP, Magma, Sage, TeX

C_3\times D_6._6D_6
% in TeX

G:=Group("C3xD6.6D6");
// GroupNames label

G:=SmallGroup(432,647);
// by ID

G=gap.SmallGroup(432,647);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,365,176,303,142,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^6=c^2=1,d^6=e^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=b^3*d^5>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<