Extensions 1→N→G→Q→1 with N=C2 and Q=C3×C3⋊D12

Direct product G=N×Q with N=C2 and Q=C3×C3⋊D12
dρLabelID
C6×C3⋊D1248C6xC3:D12432,656


Non-split extensions G=N.Q with N=C2 and Q=C3×C3⋊D12
extensionφ:Q→Aut NdρLabelID
C2.1(C3×C3⋊D12) = C3×D6⋊Dic3central extension (φ=1)48C2.1(C3xC3:D12)432,426
C2.2(C3×C3⋊D12) = C3×C6.D12central extension (φ=1)48C2.2(C3xC3:D12)432,427
C2.3(C3×C3⋊D12) = C3×Dic3⋊Dic3central extension (φ=1)48C2.3(C3xC3:D12)432,428
C2.4(C3×C3⋊D12) = C3×C3⋊D24central stem extension (φ=1)484C2.4(C3xC3:D12)432,419
C2.5(C3×C3⋊D12) = C3×D12.S3central stem extension (φ=1)484C2.5(C3xC3:D12)432,421
C2.6(C3×C3⋊D12) = C3×C325SD16central stem extension (φ=1)484C2.6(C3xC3:D12)432,422
C2.7(C3×C3⋊D12) = C3×C323Q16central stem extension (φ=1)484C2.7(C3xC3:D12)432,424

׿
×
𝔽