direct product, metabelian, supersoluble, monomial
Aliases: C3×C3⋊D24, C33⋊5D8, C32⋊9D24, C12.74S32, C3⋊2(C3×D24), (C3×D12)⋊2C6, D12⋊1(C3×S3), C12⋊S3⋊8C6, C32⋊5(C3×D8), (C3×D12)⋊10S3, C12.26(S3×C6), C6.24(C3×D12), (C3×C6).71D12, C32⋊8(D4⋊S3), (C3×C12).172D6, (C32×D12)⋊2C2, (C32×C6).19D4, C6.42(C3⋊D12), (C32×C12).2C22, (C3×C3⋊C8)⋊1C6, (C3×C3⋊C8)⋊4S3, C3⋊C8⋊1(C3×S3), C4.1(C3×S32), C3⋊1(C3×D4⋊S3), (C32×C3⋊C8)⋊2C2, C6.1(C3×C3⋊D4), (C3×C6).18(C3×D4), (C3×C12⋊S3)⋊1C2, (C3×C12).36(C2×C6), C2.4(C3×C3⋊D12), (C3×C6).70(C3⋊D4), SmallGroup(432,419)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C3⋊D24
G = < a,b,c,d | a3=b3=c24=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 616 in 134 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, C32, C32, C12, C12, D6, C2×C6, D8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, D12, D12, C3×D4, C33, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C62, D24, D4⋊S3, C3×D8, S3×C32, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C3×C3⋊C8, C3×C24, C3×D12, C3×D12, C12⋊S3, D4×C32, C32×C12, S3×C3×C6, C6×C3⋊S3, C3⋊D24, C3×D24, C3×D4⋊S3, C32×C3⋊C8, C32×D12, C3×C12⋊S3, C3×C3⋊D24
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, D12, C3⋊D4, C3×D4, S32, S3×C6, D24, D4⋊S3, C3×D8, C3⋊D12, C3×D12, C3×C3⋊D4, C3×S32, C3⋊D24, C3×D24, C3×D4⋊S3, C3×C3⋊D12, C3×C3⋊D24
(1 17 9)(2 18 10)(3 19 11)(4 20 12)(5 21 13)(6 22 14)(7 23 15)(8 24 16)(25 33 41)(26 34 42)(27 35 43)(28 36 44)(29 37 45)(30 38 46)(31 39 47)(32 40 48)
(1 17 9)(2 10 18)(3 19 11)(4 12 20)(5 21 13)(6 14 22)(7 23 15)(8 16 24)(25 33 41)(26 42 34)(27 35 43)(28 44 36)(29 37 45)(30 46 38)(31 39 47)(32 48 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 44)(2 43)(3 42)(4 41)(5 40)(6 39)(7 38)(8 37)(9 36)(10 35)(11 34)(12 33)(13 32)(14 31)(15 30)(16 29)(17 28)(18 27)(19 26)(20 25)(21 48)(22 47)(23 46)(24 45)
G:=sub<Sym(48)| (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,17,9)(2,10,18)(3,19,11)(4,12,20)(5,21,13)(6,14,22)(7,23,15)(8,16,24)(25,33,41)(26,42,34)(27,35,43)(28,44,36)(29,37,45)(30,46,38)(31,39,47)(32,48,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,48)(22,47)(23,46)(24,45)>;
G:=Group( (1,17,9)(2,18,10)(3,19,11)(4,20,12)(5,21,13)(6,22,14)(7,23,15)(8,24,16)(25,33,41)(26,34,42)(27,35,43)(28,36,44)(29,37,45)(30,38,46)(31,39,47)(32,40,48), (1,17,9)(2,10,18)(3,19,11)(4,12,20)(5,21,13)(6,14,22)(7,23,15)(8,16,24)(25,33,41)(26,42,34)(27,35,43)(28,44,36)(29,37,45)(30,46,38)(31,39,47)(32,48,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44)(2,43)(3,42)(4,41)(5,40)(6,39)(7,38)(8,37)(9,36)(10,35)(11,34)(12,33)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,26)(20,25)(21,48)(22,47)(23,46)(24,45) );
G=PermutationGroup([[(1,17,9),(2,18,10),(3,19,11),(4,20,12),(5,21,13),(6,22,14),(7,23,15),(8,24,16),(25,33,41),(26,34,42),(27,35,43),(28,36,44),(29,37,45),(30,38,46),(31,39,47),(32,40,48)], [(1,17,9),(2,10,18),(3,19,11),(4,12,20),(5,21,13),(6,14,22),(7,23,15),(8,16,24),(25,33,41),(26,42,34),(27,35,43),(28,44,36),(29,37,45),(30,46,38),(31,39,47),(32,48,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,44),(2,43),(3,42),(4,41),(5,40),(6,39),(7,38),(8,37),(9,36),(10,35),(11,34),(12,33),(13,32),(14,31),(15,30),(16,29),(17,28),(18,27),(19,26),(20,25),(21,48),(22,47),(23,46),(24,45)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4 | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | ··· | 6S | 6T | 6U | 8A | 8B | 12A | ··· | 12H | 12I | ··· | 12Q | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 12 | 36 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 36 | 36 | 6 | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | S3 | D4 | D6 | D8 | C3×S3 | C3×S3 | D12 | C3⋊D4 | C3×D4 | S3×C6 | D24 | C3×D8 | C3×D12 | C3×C3⋊D4 | C3×D24 | S32 | D4⋊S3 | C3⋊D12 | C3×S32 | C3⋊D24 | C3×D4⋊S3 | C3×C3⋊D12 | C3×C3⋊D24 |
kernel | C3×C3⋊D24 | C32×C3⋊C8 | C32×D12 | C3×C12⋊S3 | C3⋊D24 | C3×C3⋊C8 | C3×D12 | C12⋊S3 | C3×C3⋊C8 | C3×D12 | C32×C6 | C3×C12 | C33 | C3⋊C8 | D12 | C3×C6 | C3×C6 | C3×C6 | C12 | C32 | C32 | C6 | C6 | C3 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
Matrix representation of C3×C3⋊D24 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 32 | 0 | 0 | 0 | 0 |
57 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[0,57,0,0,0,0,32,32,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,16,0,0,0,0,32,0,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3×C3⋊D24 in GAP, Magma, Sage, TeX
C_3\times C_3\rtimes D_{24}
% in TeX
G:=Group("C3xC3:D24");
// GroupNames label
G:=SmallGroup(432,419);
// by ID
G=gap.SmallGroup(432,419);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,260,1011,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^24=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations