Extensions 1→N→G→Q→1 with N=C3×D12 and Q=C6

Direct product G=N×Q with N=C3×D12 and Q=C6
dρLabelID
C3×C6×D12144C3xC6xD12432,702

Semidirect products G=N:Q with N=C3×D12 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×D12)⋊1C6 = C3×C322D8φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12):1C6432,418
(C3×D12)⋊2C6 = C3×C3⋊D24φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12):2C6432,419
(C3×D12)⋊3C6 = C32×D4⋊S3φ: C6/C3C2 ⊆ Out C3×D1272(C3xD12):3C6432,475
(C3×D12)⋊4C6 = C3×D125S3φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12):4C6432,643
(C3×D12)⋊5C6 = C3×D12⋊S3φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12):5C6432,644
(C3×D12)⋊6C6 = C3×S3×D12φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12):6C6432,649
(C3×D12)⋊7C6 = C3×D6⋊D6φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12):7C6432,650
(C3×D12)⋊8C6 = S3×D4×C32φ: C6/C3C2 ⊆ Out C3×D1272(C3xD12):8C6432,704
(C3×D12)⋊9C6 = C32×Q83S3φ: C6/C3C2 ⊆ Out C3×D12144(C3xD12):9C6432,707
(C3×D12)⋊10C6 = C32×D24φ: C6/C3C2 ⊆ Out C3×D12144(C3xD12):10C6432,467
(C3×D12)⋊11C6 = C32×C4○D12φ: trivial image72(C3xD12):11C6432,703

Non-split extensions G=N.Q with N=C3×D12 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×D12).1C6 = C9×D4⋊S3φ: C6/C3C2 ⊆ Out C3×D12724(C3xD12).1C6432,150
(C3×D12).2C6 = C9×Q82S3φ: C6/C3C2 ⊆ Out C3×D121444(C3xD12).2C6432,158
(C3×D12).3C6 = S3×D4×C9φ: C6/C3C2 ⊆ Out C3×D12724(C3xD12).3C6432,358
(C3×D12).4C6 = C9×Q83S3φ: C6/C3C2 ⊆ Out C3×D121444(C3xD12).4C6432,367
(C3×D12).5C6 = C3×Dic6⋊S3φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12).5C6432,420
(C3×D12).6C6 = C3×D12.S3φ: C6/C3C2 ⊆ Out C3×D12484(C3xD12).6C6432,421
(C3×D12).7C6 = C32×Q82S3φ: C6/C3C2 ⊆ Out C3×D12144(C3xD12).7C6432,477
(C3×D12).8C6 = C9×C24⋊C2φ: C6/C3C2 ⊆ Out C3×D121442(C3xD12).8C6432,111
(C3×D12).9C6 = C9×D24φ: C6/C3C2 ⊆ Out C3×D121442(C3xD12).9C6432,112
(C3×D12).10C6 = C32×C24⋊C2φ: C6/C3C2 ⊆ Out C3×D12144(C3xD12).10C6432,466
(C3×D12).11C6 = C18×D12φ: trivial image144(C3xD12).11C6432,346
(C3×D12).12C6 = C9×C4○D12φ: trivial image722(C3xD12).12C6432,347

׿
×
𝔽