Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3×A4

Direct product G=N×Q with N=C3 and Q=Dic3×A4
dρLabelID
C3×Dic3×A4366C3xDic3xA4432,624

Semidirect products G=N:Q with N=C3 and Q=Dic3×A4
extensionφ:Q→Aut NdρLabelID
C3⋊(Dic3×A4) = A4×C3⋊Dic3φ: Dic3×A4/C6×A4C2 ⊆ Aut C3108C3:(Dic3xA4)432,627

Non-split extensions G=N.Q with N=C3 and Q=Dic3×A4
extensionφ:Q→Aut NdρLabelID
C3.1(Dic3×A4) = Dic9⋊A4φ: Dic3×A4/C6×A4C2 ⊆ Aut C31086-C3.1(Dic3xA4)432,265
C3.2(Dic3×A4) = A4×Dic9φ: Dic3×A4/C6×A4C2 ⊆ Aut C31086-C3.2(Dic3xA4)432,266
C3.3(Dic3×A4) = C624C12φ: Dic3×A4/C6×A4C2 ⊆ Aut C3366-C3.3(Dic3xA4)432,272
C3.4(Dic3×A4) = Dic3×C3.A4central extension (φ=1)366C3.4(Dic3xA4)432,271

׿
×
𝔽