Copied to
clipboard

G = Dic3xA4order 144 = 24·32

Direct product of Dic3 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: Dic3xA4, C3:(C4xA4), (C2xC6):C12, (C3xA4):3C4, C6.3(C2xA4), C2.1(S3xA4), (C22xC6).C6, (C2xA4).2S3, (C6xA4).3C2, C23.2(C3xS3), (C22xDic3):C3, C22:2(C3xDic3), SmallGroup(144,129)

Series: Derived Chief Lower central Upper central

C1C2xC6 — Dic3xA4
C1C3C2xC6C22xC6C6xA4 — Dic3xA4
C2xC6 — Dic3xA4
C1C2

Generators and relations for Dic3xA4
 G = < a,b,c,d,e | a6=c2=d2=e3=1, b2=a3, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 136 in 42 conjugacy classes, 15 normal (all characteristic)
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, A4, C3xS3, C2xA4, C3xDic3, C4xA4, S3xA4, Dic3xA4
3C2
3C2
4C3
8C3
3C22
3C22
3C4
9C4
3C6
3C6
4C6
8C6
4C32
9C2xC4
9C2xC4
2A4
3C2xC6
3Dic3
3C2xC6
12C12
4C3xC6
3C22xC4
2C2xA4
3C2xDic3
3C2xDic3
4C3xDic3
3C4xA4

Character table of Dic3xA4

 class 12A2B2C3A3B3C3D3E4A4B4C4D6A6B6C6D6E6F6G12A12B12C12D
 size 1133244883399244668812121212
ρ1111111111111111111111111    trivial
ρ2111111111-1-1-1-11111111-1-1-1-1    linear of order 2
ρ311111ζ3ζ32ζ3ζ32-1-1-1-11ζ32ζ311ζ3ζ32ζ6ζ6ζ65ζ65    linear of order 6
ρ411111ζ32ζ3ζ32ζ3-1-1-1-11ζ3ζ3211ζ32ζ3ζ65ζ65ζ6ζ6    linear of order 6
ρ511111ζ3ζ32ζ3ζ3211111ζ32ζ311ζ3ζ32ζ32ζ32ζ3ζ3    linear of order 3
ρ611111ζ32ζ3ζ32ζ311111ζ3ζ3211ζ32ζ3ζ3ζ3ζ32ζ32    linear of order 3
ρ71-11-111111-ii-ii-1-1-1-11-1-1i-ii-i    linear of order 4
ρ81-11-111111i-ii-i-1-1-1-11-1-1-ii-ii    linear of order 4
ρ91-11-11ζ3ζ32ζ3ζ32i-ii-i-1ζ6ζ65-11ζ65ζ6ζ43ζ32ζ4ζ32ζ43ζ3ζ4ζ3    linear of order 12
ρ101-11-11ζ3ζ32ζ3ζ32-ii-ii-1ζ6ζ65-11ζ65ζ6ζ4ζ32ζ43ζ32ζ4ζ3ζ43ζ3    linear of order 12
ρ111-11-11ζ32ζ3ζ32ζ3i-ii-i-1ζ65ζ6-11ζ6ζ65ζ43ζ3ζ4ζ3ζ43ζ32ζ4ζ32    linear of order 12
ρ121-11-11ζ32ζ3ζ32ζ3-ii-ii-1ζ65ζ6-11ζ6ζ65ζ4ζ3ζ43ζ3ζ4ζ32ζ43ζ32    linear of order 12
ρ132222-122-1-10000-122-1-1-1-10000    orthogonal lifted from S3
ρ142-22-2-122-1-100001-2-21-1110000    symplectic lifted from Dic3, Schur index 2
ρ152222-1-1--3-1+-3ζ6ζ650000-1-1+-3-1--3-1-1ζ6ζ650000    complex lifted from C3xS3
ρ162-22-2-1-1--3-1+-3ζ6ζ65000011--31+-31-1ζ32ζ30000    complex lifted from C3xDic3
ρ172-22-2-1-1+-3-1--3ζ65ζ6000011+-31--31-1ζ3ζ320000    complex lifted from C3xDic3
ρ182222-1-1+-3-1--3ζ65ζ60000-1-1--3-1+-3-1-1ζ65ζ60000    complex lifted from C3xS3
ρ1933-1-130000-3-311300-1-1000000    orthogonal lifted from C2xA4
ρ2033-1-13000033-1-1300-1-1000000    orthogonal lifted from A4
ρ213-3-11300003i-3i-ii-3001-1000000    complex lifted from C4xA4
ρ223-3-1130000-3i3ii-i-3001-1000000    complex lifted from C4xA4
ρ2366-2-2-300000000-30011000000    orthogonal lifted from S3xA4
ρ246-6-22-300000000300-11000000    symplectic faithful, Schur index 2

Smallest permutation representation of Dic3xA4
On 36 points
Generators in S36
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 22 4 19)(2 21 5 24)(3 20 6 23)(7 26 10 29)(8 25 11 28)(9 30 12 27)(13 32 16 35)(14 31 17 34)(15 36 18 33)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(31 34)(32 35)(33 36)
(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 17 11)(2 18 12)(3 13 7)(4 14 8)(5 15 9)(6 16 10)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)

G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,17,11)(2,18,12)(3,13,7)(4,14,8)(5,15,9)(6,16,10)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,17,11)(2,18,12)(3,13,7)(4,14,8)(5,15,9)(6,16,10)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,22,4,19),(2,21,5,24),(3,20,6,23),(7,26,10,29),(8,25,11,28),(9,30,12,27),(13,32,16,35),(14,31,17,34),(15,36,18,33)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(31,34),(32,35),(33,36)], [(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,17,11),(2,18,12),(3,13,7),(4,14,8),(5,15,9),(6,16,10),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30)]])

Dic3xA4 is a maximal subgroup of   Dic3.S4  Dic3:2S4  Dic3:S4  C4xS3xA4  Dic9:A4  C62:4C12
Dic3xA4 is a maximal quotient of   SL2(F3).Dic3  Dic9:A4  C62:4C12

Matrix representation of Dic3xA4 in GL5(F13)

112000
10000
001200
000120
000012
,
58000
08000
00800
00080
00008
,
10000
01000
001200
00010
000012
,
10000
01000
00100
000120
000012
,
10000
01000
00010
00001
00100

G:=sub<GL(5,GF(13))| [1,1,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[5,0,0,0,0,8,8,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0] >;

Dic3xA4 in GAP, Magma, Sage, TeX

{\rm Dic}_3\times A_4
% in TeX

G:=Group("Dic3xA4");
// GroupNames label

G:=SmallGroup(144,129);
// by ID

G=gap.SmallGroup(144,129);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,2,-3,36,441,190,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=c^2=d^2=e^3=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of Dic3xA4 in TeX
Character table of Dic3xA4 in TeX

׿
x
:
Z
F
o
wr
Q
<