Extensions 1→N→G→Q→1 with N=A4×C18 and Q=C2

Direct product G=N×Q with N=A4×C18 and Q=C2
dρLabelID
A4×C2×C18108A4xC2xC18432,546

Semidirect products G=N:Q with N=A4×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C18)⋊1C2 = C18×S4φ: C2/C1C2 ⊆ Out A4×C18543(A4xC18):1C2432,532
(A4×C18)⋊2C2 = C2×C9⋊S4φ: C2/C1C2 ⊆ Out A4×C18546+(A4xC18):2C2432,536
(A4×C18)⋊3C2 = C2×A4×D9φ: C2/C1C2 ⊆ Out A4×C18546+(A4xC18):3C2432,540

Non-split extensions G=N.Q with N=A4×C18 and Q=C2
extensionφ:Q→Out NdρLabelID
(A4×C18).1C2 = C9×A4⋊C4φ: C2/C1C2 ⊆ Out A4×C181083(A4xC18).1C2432,242
(A4×C18).2C2 = A4⋊Dic9φ: C2/C1C2 ⊆ Out A4×C181086-(A4xC18).2C2432,254
(A4×C18).3C2 = A4×Dic9φ: C2/C1C2 ⊆ Out A4×C181086-(A4xC18).3C2432,266
(A4×C18).4C2 = A4×C36φ: trivial image1083(A4xC18).4C2432,325

׿
×
𝔽