Copied to
clipboard

G = C2×C9⋊S4order 432 = 24·33

Direct product of C2 and C9⋊S4

direct product, non-abelian, soluble, monomial

Aliases: C2×C9⋊S4, C18⋊S4, A42D18, (C2×A4)⋊D9, C92(C2×S4), (C2×C18)⋊3D6, C3.A42D6, (A4×C18)⋊2C2, C6.7(C3⋊S4), (C6×A4).7S3, (C3×A4).3D6, C231(C9⋊S3), (C9×A4)⋊3C22, (C22×C18)⋊2S3, C3.1(C2×C3⋊S4), (C2×C3.A4)⋊1S3, C221(C2×C9⋊S3), (C22×C6).6(C3⋊S3), (C2×C6).2(C2×C3⋊S3), SmallGroup(432,536)

Series: Derived Chief Lower central Upper central

C1C22C9×A4 — C2×C9⋊S4
C1C22C2×C6C2×C18C9×A4C9⋊S4 — C2×C9⋊S4
C9×A4 — C2×C9⋊S4
C1C2

Generators and relations for C2×C9⋊S4
 G = < a,b,c,d,e,f | a2=b9=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

Subgroups: 1414 in 139 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C9, C9, C32, Dic3, A4, D6, C2×C6, C2×C6, C2×D4, D9, C18, C18, C3⋊S3, C3×C6, C2×Dic3, C3⋊D4, S4, C2×A4, C22×S3, C22×C6, C3×C9, Dic9, C3.A4, D18, C2×C18, C2×C18, C3×A4, C2×C3⋊S3, C2×C3⋊D4, C2×S4, C9⋊S3, C3×C18, C2×Dic9, C9⋊D4, C3.S4, C2×C3.A4, C22×D9, C22×C18, C3⋊S4, C6×A4, C9×A4, C2×C9⋊S3, C2×C9⋊D4, C2×C3.S4, C2×C3⋊S4, C9⋊S4, A4×C18, C2×C9⋊S4
Quotients: C1, C2, C22, S3, D6, D9, C3⋊S3, S4, D18, C2×C3⋊S3, C2×S4, C9⋊S3, C3⋊S4, C2×C9⋊S3, C2×C3⋊S4, C9⋊S4, C2×C9⋊S4

Smallest permutation representation of C2×C9⋊S4
On 54 points
Generators in S54
(1 25)(2 26)(3 27)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 52)(11 53)(12 54)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 37)(35 38)(36 39)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 25)(2 26)(3 27)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 37)(35 38)(36 39)
(10 52)(11 53)(12 54)(13 46)(14 47)(15 48)(16 49)(17 50)(18 51)(28 40)(29 41)(30 42)(31 43)(32 44)(33 45)(34 37)(35 38)(36 39)
(1 31 49)(2 32 50)(3 33 51)(4 34 52)(5 35 53)(6 36 54)(7 28 46)(8 29 47)(9 30 48)(10 19 37)(11 20 38)(12 21 39)(13 22 40)(14 23 41)(15 24 42)(16 25 43)(17 26 44)(18 27 45)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 20)(7 19)(8 27)(9 26)(10 28)(11 36)(12 35)(13 34)(14 33)(15 32)(16 31)(17 30)(18 29)(37 46)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)

G:=sub<Sym(54)| (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,31,49)(2,32,50)(3,33,51)(4,34,52)(5,35,53)(6,36,54)(7,28,46)(8,29,47)(9,30,48)(10,19,37)(11,20,38)(12,21,39)(13,22,40)(14,23,41)(15,24,42)(16,25,43)(17,26,44)(18,27,45), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,27)(9,26)(10,28)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(37,46)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)>;

G:=Group( (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (10,52)(11,53)(12,54)(13,46)(14,47)(15,48)(16,49)(17,50)(18,51)(28,40)(29,41)(30,42)(31,43)(32,44)(33,45)(34,37)(35,38)(36,39), (1,31,49)(2,32,50)(3,33,51)(4,34,52)(5,35,53)(6,36,54)(7,28,46)(8,29,47)(9,30,48)(10,19,37)(11,20,38)(12,21,39)(13,22,40)(14,23,41)(15,24,42)(16,25,43)(17,26,44)(18,27,45), (1,25)(2,24)(3,23)(4,22)(5,21)(6,20)(7,19)(8,27)(9,26)(10,28)(11,36)(12,35)(13,34)(14,33)(15,32)(16,31)(17,30)(18,29)(37,46)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47) );

G=PermutationGroup([[(1,25),(2,26),(3,27),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,52),(11,53),(12,54),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,37),(35,38),(36,39)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,25),(2,26),(3,27),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,37),(35,38),(36,39)], [(10,52),(11,53),(12,54),(13,46),(14,47),(15,48),(16,49),(17,50),(18,51),(28,40),(29,41),(30,42),(31,43),(32,44),(33,45),(34,37),(35,38),(36,39)], [(1,31,49),(2,32,50),(3,33,51),(4,34,52),(5,35,53),(6,36,54),(7,28,46),(8,29,47),(9,30,48),(10,19,37),(11,20,38),(12,21,39),(13,22,40),(14,23,41),(15,24,42),(16,25,43),(17,26,44),(18,27,45)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,20),(7,19),(8,27),(9,26),(10,28),(11,36),(12,35),(13,34),(14,33),(15,32),(16,31),(17,30),(18,29),(37,46),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47)]])

42 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B6A6B6C6D6E6F9A9B9C9D···9I18A18B18C18D···18I18J···18O
order1222223333446666669999···918181818···1818···18
size11335454288854542668882228···82226···68···8

42 irreducible representations

dim11122222222336666
type+++++++++++++++++
imageC1C2C2S3S3S3D6D6D6D9D18S4C2×S4C3⋊S4C2×C3⋊S4C9⋊S4C2×C9⋊S4
kernelC2×C9⋊S4C9⋊S4A4×C18C2×C3.A4C22×C18C6×A4C3.A4C2×C18C3×A4C2×A4A4C18C9C6C3C2C1
# reps12121121199221133

Matrix representation of C2×C9⋊S4 in GL5(𝔽37)

360000
036000
003600
000360
000036
,
1120000
1731000
00100
00010
00001
,
10000
01000
003600
000360
00001
,
10000
01000
00100
000360
000036
,
036000
136000
00001
00100
00010
,
1731000
1120000
003600
000036
000360

G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36],[11,17,0,0,0,20,31,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,36,0,0,0,0,0,36],[0,1,0,0,0,36,36,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[17,11,0,0,0,31,20,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,36,0] >;

C2×C9⋊S4 in GAP, Magma, Sage, TeX

C_2\times C_9\rtimes S_4
% in TeX

G:=Group("C2xC9:S4");
// GroupNames label

G:=SmallGroup(432,536);
// by ID

G=gap.SmallGroup(432,536);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-3,-2,2,170,1683,192,2524,9077,2287,5298,3989]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^9=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽