Extensions 1→N→G→Q→1 with N=C6 and Q=S3≀C2

Direct product G=N×Q with N=C6 and Q=S3≀C2
dρLabelID
C6×S3≀C2244C6xS3wrC2432,754

Semidirect products G=N:Q with N=C6 and Q=S3≀C2
extensionφ:Q→Aut NdρLabelID
C61S3≀C2 = C2×C322D12φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6248+C6:1S3wrC2432,756
C62S3≀C2 = C2×C33⋊D4φ: S3≀C2/S32C2 ⊆ Aut C6244C6:2S3wrC2432,755

Non-split extensions G=N.Q with N=C6 and Q=S3≀C2
extensionφ:Q→Aut NdρLabelID
C6.1S3≀C2 = He32SD16φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6726C6.1S3wrC2432,234
C6.2S3≀C2 = He3⋊D8φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6726+C6.2S3wrC2432,235
C6.3S3≀C2 = He3⋊Q16φ: S3≀C2/C32⋊C4C2 ⊆ Aut C61446-C6.3S3wrC2432,236
C6.4S3≀C2 = C6.S3≀C2φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6726-C6.4S3wrC2432,237
C6.5S3≀C2 = C32⋊D6⋊C4φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6366C6.5S3wrC2432,238
C6.6S3≀C2 = C2×He3⋊D4φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6366+C6.6S3wrC2432,530
C6.7S3≀C2 = (C3×C6).8D12φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6248+C6.7S3wrC2432,586
C6.8S3≀C2 = (C3×C6).9D12φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6488-C6.8S3wrC2432,587
C6.9S3≀C2 = C322D24φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6248+C6.9S3wrC2432,588
C6.10S3≀C2 = C338SD16φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6248+C6.10S3wrC2432,589
C6.11S3≀C2 = C333Q16φ: S3≀C2/C32⋊C4C2 ⊆ Aut C6488-C6.11S3wrC2432,590
C6.12S3≀C2 = C3⋊S3.2D12φ: S3≀C2/S32C2 ⊆ Aut C6244C6.12S3wrC2432,579
C6.13S3≀C2 = S32⋊Dic3φ: S3≀C2/S32C2 ⊆ Aut C6244C6.13S3wrC2432,580
C6.14S3≀C2 = C33⋊C4⋊C4φ: S3≀C2/S32C2 ⊆ Aut C6484C6.14S3wrC2432,581
C6.15S3≀C2 = C33⋊D8φ: S3≀C2/S32C2 ⊆ Aut C6244C6.15S3wrC2432,582
C6.16S3≀C2 = C336SD16φ: S3≀C2/S32C2 ⊆ Aut C6244C6.16S3wrC2432,583
C6.17S3≀C2 = C337SD16φ: S3≀C2/S32C2 ⊆ Aut C6244C6.17S3wrC2432,584
C6.18S3≀C2 = C33⋊Q16φ: S3≀C2/S32C2 ⊆ Aut C6484C6.18S3wrC2432,585
C6.19S3≀C2 = C3×S32⋊C4central extension (φ=1)244C6.19S3wrC2432,574
C6.20S3≀C2 = C3×C3⋊S3.Q8central extension (φ=1)484C6.20S3wrC2432,575
C6.21S3≀C2 = C3×C32⋊D8central extension (φ=1)244C6.21S3wrC2432,576
C6.22S3≀C2 = C3×C322SD16central extension (φ=1)244C6.22S3wrC2432,577
C6.23S3≀C2 = C3×C32⋊Q16central extension (φ=1)484C6.23S3wrC2432,578

׿
×
𝔽