non-abelian, soluble, monomial
Aliases: C6.8S3≀C2, C33⋊4(C4⋊C4), (C3×C6).9D12, C3⋊S3.2Dic6, C32⋊C4⋊1Dic3, (C32×C6).14D4, C32⋊2(C4⋊Dic3), C2.2(C32⋊2D12), (C3×C32⋊C4)⋊1C4, (C3×C3⋊S3).4Q8, (C2×C3⋊S3).14D6, C3⋊2(C3⋊S3.Q8), (C2×C32⋊C4).2S3, (C6×C32⋊C4).5C2, C33⋊9(C2×C4).4C2, C3⋊S3.3(C2×Dic3), (C6×C3⋊S3).10C22, (C3×C3⋊S3).12(C2×C4), SmallGroup(432,587)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C3⋊S3 — (C3×C6).9D12 |
C1 — C3 — C33 — C3×C3⋊S3 — C6×C3⋊S3 — C33⋊9(C2×C4) — (C3×C6).9D12 |
C33 — C3×C3⋊S3 — (C3×C6).9D12 |
Generators and relations for (C3×C6).9D12
G = < a,b,c,d | a3=b6=c12=1, d2=b3, ab=ba, cac-1=b2, dad-1=a-1, cbc-1=ab3, bd=db, dcd-1=c-1 >
Subgroups: 592 in 96 conjugacy classes, 23 normal (17 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, C32, C32, Dic3, C12, D6, C2×C6, C4⋊C4, C3×S3, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C32⋊C4, S3×C6, C2×C3⋊S3, C4⋊Dic3, C3×C3⋊S3, C32×C6, S3×Dic3, C6.D6, C2×C32⋊C4, C3×C3⋊Dic3, C3×C32⋊C4, C6×C3⋊S3, C3⋊S3.Q8, C33⋊9(C2×C4), C6×C32⋊C4, (C3×C6).9D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C4⋊C4, Dic6, D12, C2×Dic3, C4⋊Dic3, S3≀C2, C3⋊S3.Q8, C32⋊2D12, (C3×C6).9D12
Character table of (C3×C6).9D12
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 9 | 9 | 2 | 4 | 4 | 8 | 8 | 18 | 18 | 18 | 18 | 18 | 18 | 2 | 4 | 4 | 8 | 8 | 18 | 18 | 18 | 18 | 18 | 18 | 36 | 36 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | -1 | 1 | -i | i | i | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -1 | 1 | i | -i | -i | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | i | 1 | -1 | -i | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -i | -i | i | i | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | 1 | -1 | i | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | i | i | -i | -i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | -2 | -2 | 0 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 2 | 2 | 0 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 1 | 1 | -√3 | √3 | √3 | -√3 | 0 | 0 | 0 | 0 | orthogonal lifted from D12 |
ρ13 | 2 | 2 | -2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | 1 | 1 | √3 | -√3 | -√3 | √3 | 0 | 0 | 0 | 0 | orthogonal lifted from D12 |
ρ14 | 2 | -2 | -2 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | -2 | 2 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
ρ15 | 2 | -2 | -2 | 2 | -1 | 2 | 2 | -1 | -1 | 0 | 2 | -2 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | symplectic lifted from Dic3, Schur index 2 |
ρ16 | 2 | -2 | 2 | -2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -1 | 1 | √3 | -√3 | √3 | -√3 | 0 | 0 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -2 | -2 | 1 | 1 | -1 | 1 | -√3 | √3 | -√3 | √3 | 0 | 0 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ19 | 4 | 4 | 0 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | 4 | 0 | 0 | 4 | -2 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ21 | 4 | 4 | 0 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | -2 | -2 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ22 | 4 | 4 | 0 | 0 | 4 | -2 | 1 | -2 | 1 | 2 | 0 | 0 | 0 | 0 | 2 | 4 | -2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ23 | 4 | -4 | 0 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | -4 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -i | 0 | i | 0 | complex lifted from C3⋊S3.Q8 |
ρ24 | 4 | -4 | 0 | 0 | 4 | 1 | -2 | 1 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | -4 | -1 | 2 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | i | 0 | -i | 0 | complex lifted from C3⋊S3.Q8 |
ρ25 | 4 | -4 | 0 | 0 | 4 | -2 | 1 | -2 | 1 | -2i | 0 | 0 | 0 | 0 | 2i | -4 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | 0 | i | complex lifted from C3⋊S3.Q8 |
ρ26 | 4 | -4 | 0 | 0 | 4 | -2 | 1 | -2 | 1 | 2i | 0 | 0 | 0 | 0 | -2i | -4 | 2 | -1 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | 0 | -i | complex lifted from C3⋊S3.Q8 |
ρ27 | 8 | 8 | 0 | 0 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊2D12 |
ρ28 | 8 | 8 | 0 | 0 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊2D12 |
ρ29 | 8 | -8 | 0 | 0 | -4 | -4 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ30 | 8 | -8 | 0 | 0 | -4 | 2 | -4 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 5 9)(3 11 7)(14 22 18)(16 20 24)(25 33 29)(27 31 35)(37 45 41)(39 43 47)
(1 20)(2 13 10 21 6 17)(3 22)(4 19 8 23 12 15)(5 24)(7 14)(9 16)(11 18)(25 37)(26 46 30 38 34 42)(27 39)(28 44 36 40 32 48)(29 41)(31 43)(33 45)(35 47)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 47 20 35)(2 46 21 34)(3 45 22 33)(4 44 23 32)(5 43 24 31)(6 42 13 30)(7 41 14 29)(8 40 15 28)(9 39 16 27)(10 38 17 26)(11 37 18 25)(12 48 19 36)
G:=sub<Sym(48)| (1,5,9)(3,11,7)(14,22,18)(16,20,24)(25,33,29)(27,31,35)(37,45,41)(39,43,47), (1,20)(2,13,10,21,6,17)(3,22)(4,19,8,23,12,15)(5,24)(7,14)(9,16)(11,18)(25,37)(26,46,30,38,34,42)(27,39)(28,44,36,40,32,48)(29,41)(31,43)(33,45)(35,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,20,35)(2,46,21,34)(3,45,22,33)(4,44,23,32)(5,43,24,31)(6,42,13,30)(7,41,14,29)(8,40,15,28)(9,39,16,27)(10,38,17,26)(11,37,18,25)(12,48,19,36)>;
G:=Group( (1,5,9)(3,11,7)(14,22,18)(16,20,24)(25,33,29)(27,31,35)(37,45,41)(39,43,47), (1,20)(2,13,10,21,6,17)(3,22)(4,19,8,23,12,15)(5,24)(7,14)(9,16)(11,18)(25,37)(26,46,30,38,34,42)(27,39)(28,44,36,40,32,48)(29,41)(31,43)(33,45)(35,47), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,47,20,35)(2,46,21,34)(3,45,22,33)(4,44,23,32)(5,43,24,31)(6,42,13,30)(7,41,14,29)(8,40,15,28)(9,39,16,27)(10,38,17,26)(11,37,18,25)(12,48,19,36) );
G=PermutationGroup([[(1,5,9),(3,11,7),(14,22,18),(16,20,24),(25,33,29),(27,31,35),(37,45,41),(39,43,47)], [(1,20),(2,13,10,21,6,17),(3,22),(4,19,8,23,12,15),(5,24),(7,14),(9,16),(11,18),(25,37),(26,46,30,38,34,42),(27,39),(28,44,36,40,32,48),(29,41),(31,43),(33,45),(35,47)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,47,20,35),(2,46,21,34),(3,45,22,33),(4,44,23,32),(5,43,24,31),(6,42,13,30),(7,41,14,29),(8,40,15,28),(9,39,16,27),(10,38,17,26),(11,37,18,25),(12,48,19,36)]])
Matrix representation of (C3×C6).9D12 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 12 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
10 | 10 | 0 | 0 | 0 | 0 |
3 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 12 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 0 |
2 | 2 | 0 | 0 | 0 | 0 |
4 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 8 |
0 | 0 | 0 | 0 | 5 | 0 |
0 | 0 | 0 | 0 | 0 | 8 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,12,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,1,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[10,3,0,0,0,0,10,7,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,12,0,12,0],[2,4,0,0,0,0,2,11,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,8,0,8] >;
(C3×C6).9D12 in GAP, Magma, Sage, TeX
(C_3\times C_6)._9D_{12}
% in TeX
G:=Group("(C3xC6).9D12");
// GroupNames label
G:=SmallGroup(432,587);
// by ID
G=gap.SmallGroup(432,587);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,85,36,1684,1691,298,677,348,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^6=c^12=1,d^2=b^3,a*b=b*a,c*a*c^-1=b^2,d*a*d^-1=a^-1,c*b*c^-1=a*b^3,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export