Extensions 1→N→G→Q→1 with N=C3 and Q=S3×D12

Direct product G=N×Q with N=C3 and Q=S3×D12
dρLabelID
C3×S3×D12484C3xS3xD12432,649

Semidirect products G=N:Q with N=C3 and Q=S3×D12
extensionφ:Q→Aut NdρLabelID
C31(S3×D12) = C3⋊S34D12φ: S3×D12/C3⋊D12C2 ⊆ Aut C3248+C3:1(S3xD12)432,602
C32(S3×D12) = S3×C12⋊S3φ: S3×D12/S3×C12C2 ⊆ Aut C372C3:2(S3xD12)432,671
C33(S3×D12) = C3⋊S3×D12φ: S3×D12/C3×D12C2 ⊆ Aut C372C3:3(S3xD12)432,672
C34(S3×D12) = C123S32φ: S3×D12/C12⋊S3C2 ⊆ Aut C3484C3:4(S3xD12)432,691
C35(S3×D12) = S3×C3⋊D12φ: S3×D12/C2×S32C2 ⊆ Aut C3248+C3:5(S3xD12)432,598

Non-split extensions G=N.Q with N=C3 and Q=S3×D12
extensionφ:Q→Aut NdρLabelID
C3.1(S3×D12) = S3×D36φ: S3×D12/S3×C12C2 ⊆ Aut C3724+C3.1(S3xD12)432,291
C3.2(S3×D12) = D9×D12φ: S3×D12/C3×D12C2 ⊆ Aut C3724+C3.2(S3xD12)432,292
C3.3(S3×D12) = C3⋊S3⋊D12φ: S3×D12/C12⋊S3C2 ⊆ Aut C33612+C3.3(S3xD12)432,301

׿
×
𝔽