direct product, metabelian, supersoluble, monomial
Aliases: S3×D12, D6⋊1D6, C12⋊1D6, Dic3⋊3D6, C4⋊1S32, C3⋊1(S3×D4), (C4×S3)⋊3S3, (C3×S3)⋊1D4, C3⋊1(C2×D12), (S3×C12)⋊4C2, C32⋊2(C2×D4), (C3×D12)⋊6C2, C12⋊S3⋊5C2, C3⋊D12⋊1C2, (S3×C6)⋊1C22, (C3×C12)⋊1C22, (C3×C6).8C23, C6.8(C22×S3), (C3×Dic3)⋊3C22, (C2×S32)⋊1C2, C2.10(C2×S32), (C2×C3⋊S3)⋊1C22, SmallGroup(144,144)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×D12
G = < a,b,c,d | a3=b2=c12=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 476 in 116 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, S3, C6, C6, C2×C4, D4, C23, C32, Dic3, C12, C12, D6, D6, D6, C2×C6, C2×D4, C3×S3, C3×S3, C3⋊S3, C3×C6, C4×S3, D12, D12, C3⋊D4, C2×C12, C3×D4, C22×S3, C3×Dic3, C3×C12, S32, S3×C6, S3×C6, C2×C3⋊S3, C2×D12, S3×D4, C3⋊D12, S3×C12, C3×D12, C12⋊S3, C2×S32, S3×D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, S32, C2×D12, S3×D4, C2×S32, S3×D12
Character table of S3×D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | 12F | 12G | |
size | 1 | 1 | 3 | 3 | 6 | 6 | 18 | 18 | 2 | 2 | 4 | 2 | 6 | 2 | 2 | 4 | 6 | 6 | 12 | 12 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -2 | 2 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | -2 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -2 | -2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | 1 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ15 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 2 | -2 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | 1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | 0 | 0 | 1 | -1 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 1 | -1 | 0 | 0 | √3 | -√3 | √3 | 0 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -1 | 1 | 0 | 0 | √3 | -√3 | √3 | 0 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 1 | -1 | 0 | 0 | -√3 | √3 | -√3 | 0 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | -1 | 1 | 0 | 0 | -√3 | √3 | -√3 | 0 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -2 | 1 | 0 | 0 | orthogonal lifted from S32 |
ρ25 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 2 | -1 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | -√3 | 0 | √3 | 0 | 0 | orthogonal faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | √3 | 0 | -√3 | 0 | 0 | orthogonal faithful |
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)
G:=sub<Sym(24)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)>;
G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13) );
G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13)]])
G:=TransitiveGroup(24,229);
S3×D12 is a maximal subgroup of
C24⋊1D6 D24⋊S3 Dic6⋊3D6 D12⋊6D6 D12⋊24D6 D12⋊27D6 S32×D4 D12⋊13D6 D12⋊16D6 C3⋊S3⋊D12 C12.86S32 C3⋊S3⋊4D12 C12⋊3S32
S3×D12 is a maximal quotient of
C24⋊1D6 D24⋊S3 C24.3D6 Dic12⋊S3 D6.1D12 D24⋊7S3 D6.3D12 Dic3.D12 Dic3⋊4D12 Dic3⋊D12 D6.D12 D6.9D12 D6⋊2Dic6 Dic3⋊5D12 C62.65C23 D6⋊D12 D6⋊2D12 C12⋊7D12 Dic3⋊3D12 C12⋊D12 C12⋊3Dic6 D6⋊4D12 D6⋊5D12 C3⋊S3⋊D12 C3⋊S3⋊4D12 C12⋊3S32
Matrix representation of S3×D12 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 2 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,-1,0,0,0,0,2,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,-1,0,0,0,0,1,0],[1,-1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1] >;
S3×D12 in GAP, Magma, Sage, TeX
S_3\times D_{12}
% in TeX
G:=Group("S3xD12");
// GroupNames label
G:=SmallGroup(144,144);
// by ID
G=gap.SmallGroup(144,144);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^12=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export