Extensions 1→N→G→Q→1 with N=C3 and Q=D6⋊D6

Direct product G=N×Q with N=C3 and Q=D6⋊D6
dρLabelID
C3×D6⋊D6484C3xD6:D6432,650

Semidirect products G=N:Q with N=C3 and Q=D6⋊D6
extensionφ:Q→Aut NdρLabelID
C31(D6⋊D6) = (S3×C6)⋊D6φ: D6⋊D6/D6⋊S3C2 ⊆ Aut C3248+C3:1(D6:D6)432,601
C32(D6⋊D6) = C12⋊S32φ: D6⋊D6/C3×D12C2 ⊆ Aut C372C3:2(D6:D6)432,673
C33(D6⋊D6) = C123S32φ: D6⋊D6/C4×C3⋊S3C2 ⊆ Aut C3484C3:3(D6:D6)432,691
C34(D6⋊D6) = D6⋊S32φ: D6⋊D6/C2×S32C2 ⊆ Aut C3488-C3:4(D6:D6)432,600

Non-split extensions G=N.Q with N=C3 and Q=D6⋊D6
extensionφ:Q→Aut NdρLabelID
C3.1(D6⋊D6) = C36⋊D6φ: D6⋊D6/C3×D12C2 ⊆ Aut C3724C3.1(D6:D6)432,293
C3.2(D6⋊D6) = C12.86S32φ: D6⋊D6/C4×C3⋊S3C2 ⊆ Aut C3366+C3.2(D6:D6)432,302

׿
×
𝔽