metabelian, supersoluble, monomial
Aliases: D6⋊2D6, C12⋊2D6, D12⋊4S3, C4⋊2S32, C3⋊S3⋊2D4, C3⋊2(S3×D4), C32⋊3(C2×D4), (C3×D12)⋊7C2, D6⋊S3⋊3C2, (S3×C6)⋊2C22, (C3×C12)⋊2C22, C6.9(C22×S3), (C3×C6).9C23, C3⋊Dic3⋊3C22, (C2×S32)⋊2C2, (C4×C3⋊S3)⋊2C2, C2.11(C2×S32), (C2×C3⋊S3).15C22, SmallGroup(144,145)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊D6
G = < a,b,c,d | a6=b2=c6=d2=1, bab=cac-1=a-1, ad=da, cbc-1=ab, dbd=a3b, dcd=c-1 >
Subgroups: 448 in 116 conjugacy classes, 34 normal (10 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, C23, C32, Dic3, C12, C12, D6, D6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×C6, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C3⋊Dic3, C3×C12, S32, S3×C6, C2×C3⋊S3, S3×D4, D6⋊S3, C3×D12, C4×C3⋊S3, C2×S32, D6⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, S32, S3×D4, C2×S32, D6⋊D6
Character table of D6⋊D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 6 | 6 | 6 | 6 | 9 | 9 | 2 | 2 | 4 | 2 | 18 | 2 | 2 | 4 | 12 | 12 | 12 | 12 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | 0 | 1 | -1 | 0 | 1 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ13 | 2 | 2 | 0 | 0 | -2 | 2 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | 1 | 0 | 0 | -1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -2 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1 | 2 | -1 | 2 | 0 | -1 | 2 | -1 | 1 | 0 | 0 | 1 | 2 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ17 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | 2 | 0 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | -1 | 2 | -1 | -1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | -1 | -1 | -2 | 0 | 2 | -1 | -1 | 0 | -1 | 1 | 0 | 1 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ19 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | orthogonal lifted from C2×S32 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | 0 | 0 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ21 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | orthogonal lifted from S32 |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | -2 | 0 | 0 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 3i | -3i | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -3i | 3i | complex faithful |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 22)(8 21)(9 20)(10 19)(11 24)(12 23)
(1 23 5 19 3 21)(2 22 6 24 4 20)(7 18 11 14 9 16)(8 17 12 13 10 15)
(1 21)(2 22)(3 23)(4 24)(5 19)(6 20)(7 14)(8 15)(9 16)(10 17)(11 18)(12 13)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23), (1,23,5,19,3,21)(2,22,6,24,4,20)(7,18,11,14,9,16)(8,17,12,13,10,15), (1,21)(2,22)(3,23)(4,24)(5,19)(6,20)(7,14)(8,15)(9,16)(10,17)(11,18)(12,13)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,22)(8,21)(9,20)(10,19)(11,24)(12,23), (1,23,5,19,3,21)(2,22,6,24,4,20)(7,18,11,14,9,16)(8,17,12,13,10,15), (1,21)(2,22)(3,23)(4,24)(5,19)(6,20)(7,14)(8,15)(9,16)(10,17)(11,18)(12,13) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,22),(8,21),(9,20),(10,19),(11,24),(12,23)], [(1,23,5,19,3,21),(2,22,6,24,4,20),(7,18,11,14,9,16),(8,17,12,13,10,15)], [(1,21),(2,22),(3,23),(4,24),(5,19),(6,20),(7,14),(8,15),(9,16),(10,17),(11,18),(12,13)]])
G:=TransitiveGroup(24,231);
D6⋊D6 is a maximal subgroup of
C4.S3≀C2 C3⋊S3.2D8 C24⋊9D6 C24⋊4D6 C24⋊6D6 D12⋊D6 D12.D6 D12.9D6 D12.10D6 C4.4S3≀C2 C32⋊D8⋊C2 C3⋊S3⋊D8 C3⋊S3⋊2SD16 S32⋊D4 C4⋊S3≀C2 D12⋊23D6 D12⋊24D6 S32×D4 D12⋊12D6 D12⋊15D6 D12⋊16D6 C36⋊D6 C3⋊S3⋊D12 D6⋊S32 (S3×C6)⋊D6 C12⋊S32 C12⋊3S32
D6⋊D6 is a maximal quotient of
C24⋊9D6 C24⋊4D6 C24⋊6D6 C24.23D6 D12.2D6 D24⋊5S3 D12.4D6 C62.24C23 C62.55C23 D12⋊Dic3 D6⋊4Dic6 C62.70C23 C62.72C23 C62.82C23 C62.84C23 C62.85C23 C12⋊2D12 C12⋊Dic6 C62.91C23 D6⋊4D12 C36⋊D6 C12.86S32 D6⋊S32 (S3×C6)⋊D6 C12⋊S32 C12⋊3S32
Matrix representation of D6⋊D6 ►in GL4(𝔽5) generated by
0 | 3 | 0 | 0 |
3 | 1 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 3 |
0 | 0 | 3 | 1 |
1 | 2 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 2 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 4 | 3 |
3 | 0 | 0 | 0 |
1 | 2 | 0 | 0 |
G:=sub<GL(4,GF(5))| [0,3,0,0,3,1,0,0,0,0,1,2,0,0,2,0],[0,0,1,2,0,0,2,0,0,3,0,0,3,1,0,0],[0,0,2,0,0,0,0,2,0,1,0,0,1,2,0,0],[0,0,3,1,0,0,0,2,2,4,0,0,0,3,0,0] >;
D6⋊D6 in GAP, Magma, Sage, TeX
D_6\rtimes D_6
% in TeX
G:=Group("D6:D6");
// GroupNames label
G:=SmallGroup(144,145);
// by ID
G=gap.SmallGroup(144,145);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,218,116,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^6=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=a*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations
Export