Extensions 1→N→G→Q→1 with N=C6 and Q=S3×A4

Direct product G=N×Q with N=C6 and Q=S3×A4
dρLabelID
S3×C6×A4366S3xC6xA4432,763

Semidirect products G=N:Q with N=C6 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C6⋊(S3×A4) = C2×A4×C3⋊S3φ: S3×A4/C3×A4C2 ⊆ Aut C654C6:(S3xA4)432,764

Non-split extensions G=N.Q with N=C6 and Q=S3×A4
extensionφ:Q→Aut NdρLabelID
C6.1(S3×A4) = Dic9.A4φ: S3×A4/C3×A4C2 ⊆ Aut C614412+C6.1(S3xA4)432,261
C6.2(S3×A4) = Dic9.2A4φ: S3×A4/C3×A4C2 ⊆ Aut C61444+C6.2(S3xA4)432,262
C6.3(S3×A4) = D18.A4φ: S3×A4/C3×A4C2 ⊆ Aut C67212-C6.3(S3xA4)432,263
C6.4(S3×A4) = D9×SL2(𝔽3)φ: S3×A4/C3×A4C2 ⊆ Aut C6724-C6.4(S3xA4)432,264
C6.5(S3×A4) = Dic9⋊A4φ: S3×A4/C3×A4C2 ⊆ Aut C61086-C6.5(S3xA4)432,265
C6.6(S3×A4) = A4×Dic9φ: S3×A4/C3×A4C2 ⊆ Aut C61086-C6.6(S3xA4)432,266
C6.7(S3×A4) = C6.(S3×A4)φ: S3×A4/C3×A4C2 ⊆ Aut C67212+C6.7(S3xA4)432,269
C6.8(S3×A4) = Q8⋊He3⋊C2φ: S3×A4/C3×A4C2 ⊆ Aut C67212-C6.8(S3xA4)432,270
C6.9(S3×A4) = C624C12φ: S3×A4/C3×A4C2 ⊆ Aut C6366-C6.9(S3xA4)432,272
C6.10(S3×A4) = C2×D9⋊A4φ: S3×A4/C3×A4C2 ⊆ Aut C6546+C6.10(S3xA4)432,539
C6.11(S3×A4) = C2×A4×D9φ: S3×A4/C3×A4C2 ⊆ Aut C6546+C6.11(S3xA4)432,540
C6.12(S3×A4) = C2×C62⋊C6φ: S3×A4/C3×A4C2 ⊆ Aut C6186+C6.12(S3xA4)432,542
C6.13(S3×A4) = C3⋊Dic3.2A4φ: S3×A4/C3×A4C2 ⊆ Aut C6144C6.13(S3xA4)432,625
C6.14(S3×A4) = C3⋊S3×SL2(𝔽3)φ: S3×A4/C3×A4C2 ⊆ Aut C672C6.14(S3xA4)432,626
C6.15(S3×A4) = A4×C3⋊Dic3φ: S3×A4/C3×A4C2 ⊆ Aut C6108C6.15(S3xA4)432,627
C6.16(S3×A4) = Q8⋊C93S3central extension (φ=1)1444C6.16(S3xA4)432,267
C6.17(S3×A4) = S3×Q8⋊C9central extension (φ=1)1444C6.17(S3xA4)432,268
C6.18(S3×A4) = Dic3×C3.A4central extension (φ=1)366C6.18(S3xA4)432,271
C6.19(S3×A4) = C2×S3×C3.A4central extension (φ=1)366C6.19(S3xA4)432,541
C6.20(S3×A4) = C3×Dic3.A4central extension (φ=1)484C6.20(S3xA4)432,622
C6.21(S3×A4) = C3×S3×SL2(𝔽3)central extension (φ=1)484C6.21(S3xA4)432,623
C6.22(S3×A4) = C3×Dic3×A4central extension (φ=1)366C6.22(S3xA4)432,624

׿
×
𝔽