extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×A4) = Dic9.A4 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 144 | 12+ | C6.1(S3xA4) | 432,261 |
C6.2(S3×A4) = Dic9.2A4 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 144 | 4+ | C6.2(S3xA4) | 432,262 |
C6.3(S3×A4) = D18.A4 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 72 | 12- | C6.3(S3xA4) | 432,263 |
C6.4(S3×A4) = D9×SL2(𝔽3) | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 72 | 4- | C6.4(S3xA4) | 432,264 |
C6.5(S3×A4) = Dic9⋊A4 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 108 | 6- | C6.5(S3xA4) | 432,265 |
C6.6(S3×A4) = A4×Dic9 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 108 | 6- | C6.6(S3xA4) | 432,266 |
C6.7(S3×A4) = C6.(S3×A4) | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 72 | 12+ | C6.7(S3xA4) | 432,269 |
C6.8(S3×A4) = Q8⋊He3⋊C2 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 72 | 12- | C6.8(S3xA4) | 432,270 |
C6.9(S3×A4) = C62⋊4C12 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 36 | 6- | C6.9(S3xA4) | 432,272 |
C6.10(S3×A4) = C2×D9⋊A4 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 54 | 6+ | C6.10(S3xA4) | 432,539 |
C6.11(S3×A4) = C2×A4×D9 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 54 | 6+ | C6.11(S3xA4) | 432,540 |
C6.12(S3×A4) = C2×C62⋊C6 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 18 | 6+ | C6.12(S3xA4) | 432,542 |
C6.13(S3×A4) = C3⋊Dic3.2A4 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 144 | | C6.13(S3xA4) | 432,625 |
C6.14(S3×A4) = C3⋊S3×SL2(𝔽3) | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 72 | | C6.14(S3xA4) | 432,626 |
C6.15(S3×A4) = A4×C3⋊Dic3 | φ: S3×A4/C3×A4 → C2 ⊆ Aut C6 | 108 | | C6.15(S3xA4) | 432,627 |
C6.16(S3×A4) = Q8⋊C9⋊3S3 | central extension (φ=1) | 144 | 4 | C6.16(S3xA4) | 432,267 |
C6.17(S3×A4) = S3×Q8⋊C9 | central extension (φ=1) | 144 | 4 | C6.17(S3xA4) | 432,268 |
C6.18(S3×A4) = Dic3×C3.A4 | central extension (φ=1) | 36 | 6 | C6.18(S3xA4) | 432,271 |
C6.19(S3×A4) = C2×S3×C3.A4 | central extension (φ=1) | 36 | 6 | C6.19(S3xA4) | 432,541 |
C6.20(S3×A4) = C3×Dic3.A4 | central extension (φ=1) | 48 | 4 | C6.20(S3xA4) | 432,622 |
C6.21(S3×A4) = C3×S3×SL2(𝔽3) | central extension (φ=1) | 48 | 4 | C6.21(S3xA4) | 432,623 |
C6.22(S3×A4) = C3×Dic3×A4 | central extension (φ=1) | 36 | 6 | C6.22(S3xA4) | 432,624 |