Copied to
clipboard

G = C2xS3xC3.A4order 432 = 24·33

Direct product of C2, S3 and C3.A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C2xS3xC3.A4, (S3xC23):C9, (C22xC6):C18, (C22xS3):C18, (S3xC6).2A4, C6.19(S3xA4), C23:2(S3xC9), C22:2(S3xC18), (C2xC62).8C6, C62.14(C2xC6), C32.2(C22xA4), C6:(C2xC3.A4), (S3xC2xC6).C6, (C2xC6):(C2xC18), C3.4(C2xS3xA4), (C3xS3).(C2xA4), C3:(C22xC3.A4), (S3xC22xC6).C3, (C6xC3.A4):1C2, (C2xC6).17(S3xC6), (C3xC6).14(C2xA4), (C3xC3.A4):2C22, (C22xC6).19(C3xS3), SmallGroup(432,541)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C2xS3xC3.A4
C1C3C2xC6C62C3xC3.A4S3xC3.A4 — C2xS3xC3.A4
C2xC6 — C2xS3xC3.A4
C1C6

Generators and relations for C2xS3xC3.A4
 G = < a,b,c,d,e,f,g | a2=b3=c2=d3=e2=f2=1, g3=d, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, cbc=b-1, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, geg-1=ef=fe, gfg-1=e >

Subgroups: 604 in 148 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C3, C3, C22, C22, S3, S3, C6, C6, C23, C23, C9, C32, D6, D6, C2xC6, C2xC6, C24, C18, C3xS3, C3xS3, C3xC6, C3xC6, C22xS3, C22xS3, C22xC6, C22xC6, C3xC9, C3.A4, C3.A4, C2xC18, S3xC6, S3xC6, C62, C62, S3xC23, C23xC6, S3xC9, C3xC18, C2xC3.A4, C2xC3.A4, S3xC2xC6, S3xC2xC6, C2xC62, C3xC3.A4, S3xC18, C22xC3.A4, S3xC22xC6, S3xC3.A4, C6xC3.A4, C2xS3xC3.A4
Quotients: C1, C2, C3, C22, S3, C6, C9, A4, D6, C2xC6, C18, C3xS3, C2xA4, C3.A4, C2xC18, S3xC6, C22xA4, S3xC9, C2xC3.A4, S3xA4, S3xC18, C22xC3.A4, C2xS3xA4, S3xC3.A4, C2xS3xC3.A4

Smallest permutation representation of C2xS3xC3.A4
On 36 points
Generators in S36
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 19)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 28)(17 29)(18 30)
(1 4 7)(2 5 8)(3 6 9)(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(28 34 31)(29 35 32)(30 36 33)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)(25 36)(26 28)(27 29)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 20)(3 22)(4 23)(6 25)(7 26)(9 19)(10 31)(12 33)(13 34)(15 36)(16 28)(18 30)
(1 20)(2 21)(4 23)(5 24)(7 26)(8 27)(10 31)(11 32)(13 34)(14 35)(16 28)(17 29)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,19)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,28)(17,29)(18,30), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,28)(27,29), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,20)(3,22)(4,23)(6,25)(7,26)(9,19)(10,31)(12,33)(13,34)(15,36)(16,28)(18,30), (1,20)(2,21)(4,23)(5,24)(7,26)(8,27)(10,31)(11,32)(13,34)(14,35)(16,28)(17,29), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,19)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,28)(17,29)(18,30), (1,4,7)(2,5,8)(3,6,9)(10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35)(25,36)(26,28)(27,29), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,20)(3,22)(4,23)(6,25)(7,26)(9,19)(10,31)(12,33)(13,34)(15,36)(16,28)(18,30), (1,20)(2,21)(4,23)(5,24)(7,26)(8,27)(10,31)(11,32)(13,34)(14,35)(16,28)(17,29), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,19),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,28),(17,29),(18,30)], [(1,4,7),(2,5,8),(3,6,9),(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(28,34,31),(29,35,32),(30,36,33)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35),(25,36),(26,28),(27,29)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,20),(3,22),(4,23),(6,25),(7,26),(9,19),(10,31),(12,33),(13,34),(15,36),(16,28),(18,30)], [(1,20),(2,21),(4,23),(5,24),(7,26),(8,27),(10,31),(11,32),(13,34),(14,35),(16,28),(17,29)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E6A6B6C6D6E6F···6M6N···6S6T6U6V6W9A···9F9G···9L18A···18F18G···18L18M···18X
order1222222233333666666···66···666669···99···918···1818···1818···18
size1133339911222112223···36···699994···48···84···48···812···12

72 irreducible representations

dim1111111112222223333336666
type++++++++++
imageC1C2C2C3C6C6C9C18C18S3D6C3xS3S3xC6S3xC9S3xC18A4C2xA4C2xA4C3.A4C2xC3.A4C2xC3.A4S3xA4C2xS3xA4S3xC3.A4C2xS3xC3.A4
kernelC2xS3xC3.A4S3xC3.A4C6xC3.A4S3xC22xC6S3xC2xC6C2xC62S3xC23C22xS3C22xC6C2xC3.A4C3.A4C22xC6C2xC6C23C22S3xC6C3xS3C3xC6D6S3C6C6C3C2C1
# reps12124261261122661212421122

Matrix representation of C2xS3xC3.A4 in GL5(F19)

180000
018000
00100
00010
00001
,
110000
07000
00100
00010
00001
,
018000
180000
00100
00010
00001
,
10000
01000
00700
00070
00007
,
10000
01000
001800
000180
00001
,
10000
01000
001800
00010
000018
,
10000
01000
00060
00006
00600

G:=sub<GL(5,GF(19))| [18,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[11,0,0,0,0,0,7,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,18,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,7,0,0,0,0,0,7,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,18,0,0,0,0,0,18,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,18],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,6,0,0,6,0,0,0,0,0,6,0] >;

C2xS3xC3.A4 in GAP, Magma, Sage, TeX

C_2\times S_3\times C_3.A_4
% in TeX

G:=Group("C2xS3xC3.A4");
// GroupNames label

G:=SmallGroup(432,541);
// by ID

G=gap.SmallGroup(432,541);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,2,-3,79,963,397,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^3=c^2=d^3=e^2=f^2=1,g^3=d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=e*f=f*e,g*f*g^-1=e>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<