Extensions 1→N→G→Q→1 with N=C6xA4 and Q=S3

Direct product G=NxQ with N=C6xA4 and Q=S3
dρLabelID
S3xC6xA4366S3xC6xA4432,763

Semidirect products G=N:Q with N=C6xA4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6xA4):1S3 = C2xC32:S4φ: S3/C1S3 ⊆ Out C6xA4183(C6xA4):1S3432,538
(C6xA4):2S3 = C2xC62:C6φ: S3/C1S3 ⊆ Out C6xA4186+(C6xA4):2S3432,542
(C6xA4):3S3 = C6xC3:S4φ: S3/C3C2 ⊆ Out C6xA4366(C6xA4):3S3432,761
(C6xA4):4S3 = C2xC32:4S4φ: S3/C3C2 ⊆ Out C6xA454(C6xA4):4S3432,762
(C6xA4):5S3 = C2xA4xC3:S3φ: S3/C3C2 ⊆ Out C6xA454(C6xA4):5S3432,764

Non-split extensions G=N.Q with N=C6xA4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6xA4).1S3 = C62:6Dic3φ: S3/C1S3 ⊆ Out C6xA4363(C6xA4).1S3432,260
(C6xA4).2S3 = Dic9:A4φ: S3/C1S3 ⊆ Out C6xA41086-(C6xA4).2S3432,265
(C6xA4).3S3 = C62:4C12φ: S3/C1S3 ⊆ Out C6xA4366-(C6xA4).3S3432,272
(C6xA4).4S3 = C2xD9:A4φ: S3/C1S3 ⊆ Out C6xA4546+(C6xA4).4S3432,539
(C6xA4).5S3 = A4:Dic9φ: S3/C3C2 ⊆ Out C6xA41086-(C6xA4).5S3432,254
(C6xA4).6S3 = A4xDic9φ: S3/C3C2 ⊆ Out C6xA41086-(C6xA4).6S3432,266
(C6xA4).7S3 = C2xC9:S4φ: S3/C3C2 ⊆ Out C6xA4546+(C6xA4).7S3432,536
(C6xA4).8S3 = C2xA4xD9φ: S3/C3C2 ⊆ Out C6xA4546+(C6xA4).8S3432,540
(C6xA4).9S3 = C3xC6.7S4φ: S3/C3C2 ⊆ Out C6xA4366(C6xA4).9S3432,618
(C6xA4).10S3 = C62:10Dic3φ: S3/C3C2 ⊆ Out C6xA4108(C6xA4).10S3432,621
(C6xA4).11S3 = A4xC3:Dic3φ: S3/C3C2 ⊆ Out C6xA4108(C6xA4).11S3432,627
(C6xA4).12S3 = C3xDic3xA4φ: trivial image366(C6xA4).12S3432,624

׿
x
:
Z
F
o
wr
Q
<