Extensions 1→N→G→Q→1 with N=C6×A4 and Q=S3

Direct product G=N×Q with N=C6×A4 and Q=S3
dρLabelID
S3×C6×A4366S3xC6xA4432,763

Semidirect products G=N:Q with N=C6×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×A4)⋊1S3 = C2×C32⋊S4φ: S3/C1S3 ⊆ Out C6×A4183(C6xA4):1S3432,538
(C6×A4)⋊2S3 = C2×C62⋊C6φ: S3/C1S3 ⊆ Out C6×A4186+(C6xA4):2S3432,542
(C6×A4)⋊3S3 = C6×C3⋊S4φ: S3/C3C2 ⊆ Out C6×A4366(C6xA4):3S3432,761
(C6×A4)⋊4S3 = C2×C324S4φ: S3/C3C2 ⊆ Out C6×A454(C6xA4):4S3432,762
(C6×A4)⋊5S3 = C2×A4×C3⋊S3φ: S3/C3C2 ⊆ Out C6×A454(C6xA4):5S3432,764

Non-split extensions G=N.Q with N=C6×A4 and Q=S3
extensionφ:Q→Out NdρLabelID
(C6×A4).1S3 = C626Dic3φ: S3/C1S3 ⊆ Out C6×A4363(C6xA4).1S3432,260
(C6×A4).2S3 = Dic9⋊A4φ: S3/C1S3 ⊆ Out C6×A41086-(C6xA4).2S3432,265
(C6×A4).3S3 = C624C12φ: S3/C1S3 ⊆ Out C6×A4366-(C6xA4).3S3432,272
(C6×A4).4S3 = C2×D9⋊A4φ: S3/C1S3 ⊆ Out C6×A4546+(C6xA4).4S3432,539
(C6×A4).5S3 = A4⋊Dic9φ: S3/C3C2 ⊆ Out C6×A41086-(C6xA4).5S3432,254
(C6×A4).6S3 = A4×Dic9φ: S3/C3C2 ⊆ Out C6×A41086-(C6xA4).6S3432,266
(C6×A4).7S3 = C2×C9⋊S4φ: S3/C3C2 ⊆ Out C6×A4546+(C6xA4).7S3432,536
(C6×A4).8S3 = C2×A4×D9φ: S3/C3C2 ⊆ Out C6×A4546+(C6xA4).8S3432,540
(C6×A4).9S3 = C3×C6.7S4φ: S3/C3C2 ⊆ Out C6×A4366(C6xA4).9S3432,618
(C6×A4).10S3 = C6210Dic3φ: S3/C3C2 ⊆ Out C6×A4108(C6xA4).10S3432,621
(C6×A4).11S3 = A4×C3⋊Dic3φ: S3/C3C2 ⊆ Out C6×A4108(C6xA4).11S3432,627
(C6×A4).12S3 = C3×Dic3×A4φ: trivial image366(C6xA4).12S3432,624

׿
×
𝔽