Extensions 1→N→G→Q→1 with N=C3⋊C8 and Q=C3⋊S3

Direct product G=N×Q with N=C3⋊C8 and Q=C3⋊S3
dρLabelID
C3⋊S3×C3⋊C8144C3:S3xC3:C8432,431

Semidirect products G=N:Q with N=C3⋊C8 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
C3⋊C81(C3⋊S3) = C338D8φ: C3⋊S3/C32C2 ⊆ Out C3⋊C872C3:C8:1(C3:S3)432,438
C3⋊C82(C3⋊S3) = C3316SD16φ: C3⋊S3/C32C2 ⊆ Out C3⋊C8144C3:C8:2(C3:S3)432,443
C3⋊C83(C3⋊S3) = C3317SD16φ: C3⋊S3/C32C2 ⊆ Out C3⋊C872C3:C8:3(C3:S3)432,444
C3⋊C84(C3⋊S3) = C338M4(2)φ: C3⋊S3/C32C2 ⊆ Out C3⋊C8144C3:C8:4(C3:S3)432,434
C3⋊C85(C3⋊S3) = C339M4(2)φ: C3⋊S3/C32C2 ⊆ Out C3⋊C872C3:C8:5(C3:S3)432,435
C3⋊C86(C3⋊S3) = C12.69S32φ: trivial image72C3:C8:6(C3:S3)432,432

Non-split extensions G=N.Q with N=C3⋊C8 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
C3⋊C8.(C3⋊S3) = C338Q16φ: C3⋊S3/C32C2 ⊆ Out C3⋊C8144C3:C8.(C3:S3)432,447

׿
×
𝔽