Copied to
clipboard

G = C3⋊S3×C3⋊C8order 432 = 24·33

Direct product of C3⋊S3 and C3⋊C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3⋊S3×C3⋊C8, C12.68S32, C327(S3×C8), C3311(C2×C8), C337C88C2, C6.6(S3×Dic3), (C3×C12).163D6, C3⋊Dic3.9Dic3, (C32×C12).65C22, C31(S3×C3⋊C8), (C3×C3⋊C8)⋊5S3, C33(C8×C3⋊S3), (C3×C3⋊S3)⋊5C8, (C6×C3⋊S3).5C4, C4.23(S3×C3⋊S3), C6.17(C4×C3⋊S3), C3210(C2×C3⋊C8), (C4×C3⋊S3).13S3, C12.38(C2×C3⋊S3), (C32×C3⋊C8)⋊10C2, (C3×C6).44(C4×S3), C2.1(Dic3×C3⋊S3), (C12×C3⋊S3).10C2, (C3×C3⋊Dic3).8C4, (C2×C3⋊S3).9Dic3, (C32×C6).32(C2×C4), (C3×C6).50(C2×Dic3), SmallGroup(432,431)

Series: Derived Chief Lower central Upper central

C1C33 — C3⋊S3×C3⋊C8
C1C3C32C33C32×C6C32×C12C32×C3⋊C8 — C3⋊S3×C3⋊C8
C33 — C3⋊S3×C3⋊C8
C1C4

Generators and relations for C3⋊S3×C3⋊C8
 G = < a,b,c,d,e | a3=b3=c2=d3=e8=1, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 600 in 164 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, C2×C4, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C3⋊C8, C24, C4×S3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, S3×C8, C2×C3⋊C8, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C324C8, C3×C24, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, S3×C3⋊C8, C8×C3⋊S3, C32×C3⋊C8, C337C8, C12×C3⋊S3, C3⋊S3×C3⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, Dic3, D6, C2×C8, C3⋊S3, C3⋊C8, C4×S3, C2×Dic3, S32, C2×C3⋊S3, S3×C8, C2×C3⋊C8, S3×Dic3, C4×C3⋊S3, S3×C3⋊S3, S3×C3⋊C8, C8×C3⋊S3, Dic3×C3⋊S3, C3⋊S3×C3⋊C8

Smallest permutation representation of C3⋊S3×C3⋊C8
On 144 points
Generators in S144
(1 36 61)(2 37 62)(3 38 63)(4 39 64)(5 40 57)(6 33 58)(7 34 59)(8 35 60)(9 121 118)(10 122 119)(11 123 120)(12 124 113)(13 125 114)(14 126 115)(15 127 116)(16 128 117)(17 77 30)(18 78 31)(19 79 32)(20 80 25)(21 73 26)(22 74 27)(23 75 28)(24 76 29)(41 130 98)(42 131 99)(43 132 100)(44 133 101)(45 134 102)(46 135 103)(47 136 104)(48 129 97)(49 85 90)(50 86 91)(51 87 92)(52 88 93)(53 81 94)(54 82 95)(55 83 96)(56 84 89)(65 105 141)(66 106 142)(67 107 143)(68 108 144)(69 109 137)(70 110 138)(71 111 139)(72 112 140)
(1 53 141)(2 54 142)(3 55 143)(4 56 144)(5 49 137)(6 50 138)(7 51 139)(8 52 140)(9 24 129)(10 17 130)(11 18 131)(12 19 132)(13 20 133)(14 21 134)(15 22 135)(16 23 136)(25 44 114)(26 45 115)(27 46 116)(28 47 117)(29 48 118)(30 41 119)(31 42 120)(32 43 113)(33 86 70)(34 87 71)(35 88 72)(36 81 65)(37 82 66)(38 83 67)(39 84 68)(40 85 69)(57 90 109)(58 91 110)(59 92 111)(60 93 112)(61 94 105)(62 95 106)(63 96 107)(64 89 108)(73 102 126)(74 103 127)(75 104 128)(76 97 121)(77 98 122)(78 99 123)(79 100 124)(80 101 125)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 55)(10 56)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)(41 68)(42 69)(43 70)(44 71)(45 72)(46 65)(47 66)(48 67)(57 78)(58 79)(59 80)(60 73)(61 74)(62 75)(63 76)(64 77)(81 116)(82 117)(83 118)(84 119)(85 120)(86 113)(87 114)(88 115)(89 122)(90 123)(91 124)(92 125)(93 126)(94 127)(95 128)(96 121)(97 107)(98 108)(99 109)(100 110)(101 111)(102 112)(103 105)(104 106)(129 143)(130 144)(131 137)(132 138)(133 139)(134 140)(135 141)(136 142)
(1 36 61)(2 62 37)(3 38 63)(4 64 39)(5 40 57)(6 58 33)(7 34 59)(8 60 35)(9 118 121)(10 122 119)(11 120 123)(12 124 113)(13 114 125)(14 126 115)(15 116 127)(16 128 117)(17 77 30)(18 31 78)(19 79 32)(20 25 80)(21 73 26)(22 27 74)(23 75 28)(24 29 76)(41 130 98)(42 99 131)(43 132 100)(44 101 133)(45 134 102)(46 103 135)(47 136 104)(48 97 129)(49 85 90)(50 91 86)(51 87 92)(52 93 88)(53 81 94)(54 95 82)(55 83 96)(56 89 84)(65 105 141)(66 142 106)(67 107 143)(68 144 108)(69 109 137)(70 138 110)(71 111 139)(72 140 112)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)

G:=sub<Sym(144)| (1,36,61)(2,37,62)(3,38,63)(4,39,64)(5,40,57)(6,33,58)(7,34,59)(8,35,60)(9,121,118)(10,122,119)(11,123,120)(12,124,113)(13,125,114)(14,126,115)(15,127,116)(16,128,117)(17,77,30)(18,78,31)(19,79,32)(20,80,25)(21,73,26)(22,74,27)(23,75,28)(24,76,29)(41,130,98)(42,131,99)(43,132,100)(44,133,101)(45,134,102)(46,135,103)(47,136,104)(48,129,97)(49,85,90)(50,86,91)(51,87,92)(52,88,93)(53,81,94)(54,82,95)(55,83,96)(56,84,89)(65,105,141)(66,106,142)(67,107,143)(68,108,144)(69,109,137)(70,110,138)(71,111,139)(72,112,140), (1,53,141)(2,54,142)(3,55,143)(4,56,144)(5,49,137)(6,50,138)(7,51,139)(8,52,140)(9,24,129)(10,17,130)(11,18,131)(12,19,132)(13,20,133)(14,21,134)(15,22,135)(16,23,136)(25,44,114)(26,45,115)(27,46,116)(28,47,117)(29,48,118)(30,41,119)(31,42,120)(32,43,113)(33,86,70)(34,87,71)(35,88,72)(36,81,65)(37,82,66)(38,83,67)(39,84,68)(40,85,69)(57,90,109)(58,91,110)(59,92,111)(60,93,112)(61,94,105)(62,95,106)(63,96,107)(64,89,108)(73,102,126)(74,103,127)(75,104,128)(76,97,121)(77,98,122)(78,99,123)(79,100,124)(80,101,125), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(41,68)(42,69)(43,70)(44,71)(45,72)(46,65)(47,66)(48,67)(57,78)(58,79)(59,80)(60,73)(61,74)(62,75)(63,76)(64,77)(81,116)(82,117)(83,118)(84,119)(85,120)(86,113)(87,114)(88,115)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,121)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,105)(104,106)(129,143)(130,144)(131,137)(132,138)(133,139)(134,140)(135,141)(136,142), (1,36,61)(2,62,37)(3,38,63)(4,64,39)(5,40,57)(6,58,33)(7,34,59)(8,60,35)(9,118,121)(10,122,119)(11,120,123)(12,124,113)(13,114,125)(14,126,115)(15,116,127)(16,128,117)(17,77,30)(18,31,78)(19,79,32)(20,25,80)(21,73,26)(22,27,74)(23,75,28)(24,29,76)(41,130,98)(42,99,131)(43,132,100)(44,101,133)(45,134,102)(46,103,135)(47,136,104)(48,97,129)(49,85,90)(50,91,86)(51,87,92)(52,93,88)(53,81,94)(54,95,82)(55,83,96)(56,89,84)(65,105,141)(66,142,106)(67,107,143)(68,144,108)(69,109,137)(70,138,110)(71,111,139)(72,140,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)>;

G:=Group( (1,36,61)(2,37,62)(3,38,63)(4,39,64)(5,40,57)(6,33,58)(7,34,59)(8,35,60)(9,121,118)(10,122,119)(11,123,120)(12,124,113)(13,125,114)(14,126,115)(15,127,116)(16,128,117)(17,77,30)(18,78,31)(19,79,32)(20,80,25)(21,73,26)(22,74,27)(23,75,28)(24,76,29)(41,130,98)(42,131,99)(43,132,100)(44,133,101)(45,134,102)(46,135,103)(47,136,104)(48,129,97)(49,85,90)(50,86,91)(51,87,92)(52,88,93)(53,81,94)(54,82,95)(55,83,96)(56,84,89)(65,105,141)(66,106,142)(67,107,143)(68,108,144)(69,109,137)(70,110,138)(71,111,139)(72,112,140), (1,53,141)(2,54,142)(3,55,143)(4,56,144)(5,49,137)(6,50,138)(7,51,139)(8,52,140)(9,24,129)(10,17,130)(11,18,131)(12,19,132)(13,20,133)(14,21,134)(15,22,135)(16,23,136)(25,44,114)(26,45,115)(27,46,116)(28,47,117)(29,48,118)(30,41,119)(31,42,120)(32,43,113)(33,86,70)(34,87,71)(35,88,72)(36,81,65)(37,82,66)(38,83,67)(39,84,68)(40,85,69)(57,90,109)(58,91,110)(59,92,111)(60,93,112)(61,94,105)(62,95,106)(63,96,107)(64,89,108)(73,102,126)(74,103,127)(75,104,128)(76,97,121)(77,98,122)(78,99,123)(79,100,124)(80,101,125), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33)(41,68)(42,69)(43,70)(44,71)(45,72)(46,65)(47,66)(48,67)(57,78)(58,79)(59,80)(60,73)(61,74)(62,75)(63,76)(64,77)(81,116)(82,117)(83,118)(84,119)(85,120)(86,113)(87,114)(88,115)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,121)(97,107)(98,108)(99,109)(100,110)(101,111)(102,112)(103,105)(104,106)(129,143)(130,144)(131,137)(132,138)(133,139)(134,140)(135,141)(136,142), (1,36,61)(2,62,37)(3,38,63)(4,64,39)(5,40,57)(6,58,33)(7,34,59)(8,60,35)(9,118,121)(10,122,119)(11,120,123)(12,124,113)(13,114,125)(14,126,115)(15,116,127)(16,128,117)(17,77,30)(18,31,78)(19,79,32)(20,25,80)(21,73,26)(22,27,74)(23,75,28)(24,29,76)(41,130,98)(42,99,131)(43,132,100)(44,101,133)(45,134,102)(46,103,135)(47,136,104)(48,97,129)(49,85,90)(50,91,86)(51,87,92)(52,93,88)(53,81,94)(54,95,82)(55,83,96)(56,89,84)(65,105,141)(66,142,106)(67,107,143)(68,144,108)(69,109,137)(70,138,110)(71,111,139)(72,140,112), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144) );

G=PermutationGroup([[(1,36,61),(2,37,62),(3,38,63),(4,39,64),(5,40,57),(6,33,58),(7,34,59),(8,35,60),(9,121,118),(10,122,119),(11,123,120),(12,124,113),(13,125,114),(14,126,115),(15,127,116),(16,128,117),(17,77,30),(18,78,31),(19,79,32),(20,80,25),(21,73,26),(22,74,27),(23,75,28),(24,76,29),(41,130,98),(42,131,99),(43,132,100),(44,133,101),(45,134,102),(46,135,103),(47,136,104),(48,129,97),(49,85,90),(50,86,91),(51,87,92),(52,88,93),(53,81,94),(54,82,95),(55,83,96),(56,84,89),(65,105,141),(66,106,142),(67,107,143),(68,108,144),(69,109,137),(70,110,138),(71,111,139),(72,112,140)], [(1,53,141),(2,54,142),(3,55,143),(4,56,144),(5,49,137),(6,50,138),(7,51,139),(8,52,140),(9,24,129),(10,17,130),(11,18,131),(12,19,132),(13,20,133),(14,21,134),(15,22,135),(16,23,136),(25,44,114),(26,45,115),(27,46,116),(28,47,117),(29,48,118),(30,41,119),(31,42,120),(32,43,113),(33,86,70),(34,87,71),(35,88,72),(36,81,65),(37,82,66),(38,83,67),(39,84,68),(40,85,69),(57,90,109),(58,91,110),(59,92,111),(60,93,112),(61,94,105),(62,95,106),(63,96,107),(64,89,108),(73,102,126),(74,103,127),(75,104,128),(76,97,121),(77,98,122),(78,99,123),(79,100,124),(80,101,125)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,55),(10,56),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33),(41,68),(42,69),(43,70),(44,71),(45,72),(46,65),(47,66),(48,67),(57,78),(58,79),(59,80),(60,73),(61,74),(62,75),(63,76),(64,77),(81,116),(82,117),(83,118),(84,119),(85,120),(86,113),(87,114),(88,115),(89,122),(90,123),(91,124),(92,125),(93,126),(94,127),(95,128),(96,121),(97,107),(98,108),(99,109),(100,110),(101,111),(102,112),(103,105),(104,106),(129,143),(130,144),(131,137),(132,138),(133,139),(134,140),(135,141),(136,142)], [(1,36,61),(2,62,37),(3,38,63),(4,64,39),(5,40,57),(6,58,33),(7,34,59),(8,60,35),(9,118,121),(10,122,119),(11,120,123),(12,124,113),(13,114,125),(14,126,115),(15,116,127),(16,128,117),(17,77,30),(18,31,78),(19,79,32),(20,25,80),(21,73,26),(22,27,74),(23,75,28),(24,29,76),(41,130,98),(42,99,131),(43,132,100),(44,101,133),(45,134,102),(46,103,135),(47,136,104),(48,97,129),(49,85,90),(50,91,86),(51,87,92),(52,93,88),(53,81,94),(54,95,82),(55,83,96),(56,89,84),(65,105,141),(66,142,106),(67,107,143),(68,144,108),(69,109,137),(70,138,110),(71,111,139),(72,140,112)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)]])

72 conjugacy classes

class 1 2A2B2C3A···3E3F3G3H3I4A4B4C4D6A···6E6F6G6H6I6J6K8A8B8C8D8E8F8G8H12A···12J12K···12R12S12T24A···24P
order12223···3333344446···66666668888888812···1212···12121224···24
size11992···2444411992···2444418183333272727272···24···418186···6

72 irreducible representations

dim111111122222222444
type++++++-+-+-
imageC1C2C2C2C4C4C8S3S3Dic3D6Dic3C3⋊C8C4×S3S3×C8S32S3×Dic3S3×C3⋊C8
kernelC3⋊S3×C3⋊C8C32×C3⋊C8C337C8C12×C3⋊S3C3×C3⋊Dic3C6×C3⋊S3C3×C3⋊S3C3×C3⋊C8C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C3⋊S3C3×C6C32C12C6C3
# reps1111228411514816448

Matrix representation of C3⋊S3×C3⋊C8 in GL6(𝔽73)

100000
010000
001000
000100
0000072
0000172
,
1700000
1710000
001000
000100
0000721
0000720
,
52210000
59210000
0072000
0007200
000001
000010
,
100000
010000
000100
00727200
000010
000001
,
1000000
0100000
0072000
001100
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,1,0,0,0,0,70,71,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[52,59,0,0,0,0,21,21,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,0,0,0,0,0,0,10,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C3⋊S3×C3⋊C8 in GAP, Magma, Sage, TeX

C_3\rtimes S_3\times C_3\rtimes C_8
% in TeX

G:=Group("C3:S3xC3:C8");
// GroupNames label

G:=SmallGroup(432,431);
// by ID

G=gap.SmallGroup(432,431);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^3=e^8=1,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽