Extensions 1→N→G→Q→1 with N=C4 and Q=D54

Direct product G=N×Q with N=C4 and Q=D54
dρLabelID
C2×C4×D27216C2xC4xD27432,44

Semidirect products G=N:Q with N=C4 and Q=D54
extensionφ:Q→Aut NdρLabelID
C41D54 = D4×D27φ: D54/D27C2 ⊆ Aut C41084+C4:1D54432,47
C42D54 = C2×D108φ: D54/C54C2 ⊆ Aut C4216C4:2D54432,45

Non-split extensions G=N.Q with N=C4 and Q=D54
extensionφ:Q→Aut NdρLabelID
C4.1D54 = D4.D27φ: D54/D27C2 ⊆ Aut C42164-C4.1D54432,15
C4.2D54 = D4⋊D27φ: D54/D27C2 ⊆ Aut C42164+C4.2D54432,16
C4.3D54 = C27⋊Q16φ: D54/D27C2 ⊆ Aut C44324-C4.3D54432,17
C4.4D54 = Q82D27φ: D54/D27C2 ⊆ Aut C42164+C4.4D54432,18
C4.5D54 = D42D27φ: D54/D27C2 ⊆ Aut C42164-C4.5D54432,48
C4.6D54 = Q8×D27φ: D54/D27C2 ⊆ Aut C42164-C4.6D54432,49
C4.7D54 = Q83D27φ: D54/D27C2 ⊆ Aut C42164+C4.7D54432,50
C4.8D54 = Dic108φ: D54/C54C2 ⊆ Aut C44322-C4.8D54432,4
C4.9D54 = C216⋊C2φ: D54/C54C2 ⊆ Aut C42162C4.9D54432,7
C4.10D54 = D216φ: D54/C54C2 ⊆ Aut C42162+C4.10D54432,8
C4.11D54 = C2×Dic54φ: D54/C54C2 ⊆ Aut C4432C4.11D54432,43
C4.12D54 = D1085C2φ: D54/C54C2 ⊆ Aut C42162C4.12D54432,46
C4.13D54 = C8×D27central extension (φ=1)2162C4.13D54432,5
C4.14D54 = C8⋊D27central extension (φ=1)2162C4.14D54432,6
C4.15D54 = C2×C27⋊C8central extension (φ=1)432C4.15D54432,9
C4.16D54 = C4.Dic27central extension (φ=1)2162C4.16D54432,10

׿
×
𝔽